

On the spatial variability of the alpine snow cover

Yves Bühler

EARSeL Workshop on Land Ice and Snow

February 3rd – 6th 2014

Snow in complex terrain: Mountain ranges in the world

- 20% of the terrestrial surface
- 20% of the human population

Fundamental role for:

- Water supply
- Ecology
- Climate system
- Tourism
- Hydropower
- Hazard management
- → Large scale **coverage** needed
- → Spatially continuous data needed
- → But in which **spatial** and **temporal** resolution?

a) Snow Covered Area SCA (FSC)

- Measured operationally by remote sensing instruments
- Rapid changes especially in spring (high temporal resolution needed)
- Influence of complex terrain (cast shadow, forests, rocks)?

b) Snow Depth / Snow Water Equivalent

- Global SWE products available with 25km resolution (passive microwave)
- Mountain regions excluded
- Spatial resolution insufficient for alpine terrain

- Very high spatial variability due to:
 - Complex terrain
 - Wind
 - Avalanches
- What is the correct snow depth?
- Very much scale dependent!

2.30	1.78	1.35	0.95	0.65
2.25	1.60	0.90	0.65	<u>0.55</u>
1.90	1.35	0.85	0.70	0.75
1.40	1.00	0.90	1.50	1.85
1.35	1.25	1.20	2.10	2.35

ADS80 (100) opt-electronic scanner

Pixel: 6 μm

CCD Zeile: 12'000

(20'000)

Räumliche Auflösung: ~ 0.25 m

Radiometrische

Auflösung: 12-bit

Spektrale Auflösung: 4 Kanäle

pan: 465 – 680 nm -16/0/27° blue: 428 – 492 nm -16/0° green: 533 – 587 nm -16/0° red: 608 – 662 nm -16/0° nir: 833 – 887 nm -16/0°

- High spatial resolution data gets available
 - Airborne laserscanning LiDAR (accurate)
 - Digital photogrammetry (more economic)

Comparison TLS vs. digital photogrammetry

c) Surface snow type / grain size

- Near infrared bands are sensitive to optical equivalent grain size (Warren 1982)
- Important for avalanche danger assessment
- Wetness / free water content, density

ADS blue band

Normalized difference index NDI (nir + blue / nir - blue)

d) Surface roughness

e) Snowpack layering

Measurement techniques

- Computer tomography (CT):
 - Reconstruction of 3D microstructure
 - Resolution ~ 0.02 mm
- SnowMicroPen (SMP):
 - High resolution stratigraphy
 - Resolution ~ 1 mm
 - Portable and fast —> spatial variability
- Near Infrared Photography (NIP):
 - 2D SSA profiles
 - Resolution ~ 1 mm

(Source: M. Schneebeli, SLF)

SMP measured Density at Kohnen Station Antartica (cross-section), measurement every 40cm

Conclusions

- Snow in complex terrain is important for numerous applications
- Remote sensing can provide spatially continuous data
- The spatial variability is very high for all parameters
- → high spatial resolution is requested
- Temporal variability can be high
- → high temporal resolution is requested
- Today's operational remote sensing products might not be able to capture the spatial variability in alpine terrain
- Extensive validation using high spatial resolution data
- Further development RS of products using high resolution data

EAS IAP Project AAF Improved Alpine Avalanche Forecast service

- How can we use satellite technology (earth observation, GNSS & satcom) to improve avalanche warning?
- Consortium: SLF/ NGI / ENVEO / GAMMA

- Key users:
 - European avalanche warning services
 - Regional/local users (e.g. road administration, ski resorts, authorities)
 - The general public

