A regional climate model hindcast for Siberia

added value assessment of SWE

7th EARSel LISSIG Workshop Bern 06.02.2014

Katharina Klehmet, B. Geyer and B. Rockel Institute of Coastal Research Regional Atmospheric Modelling

Siberia – hot spot of climate change

Observed annual trends in surface temperature (1901-2012)

- Strong positive surface temperature trends over 1901-2012
- Hot spot of climate change
- Feedbacks e.g. to the global carbon and hydrological cycle
- Long-term information of climate parameters as basis for change analysis

Sparseness of in situ measurements

- Sparse station network especially in the arctic regions
- Few stations incorporated in gridded observational products
- Unevenly distributed stations

Need for consistent climate information with less spatial and temporal gaps

Climate reconstruction using the regional climate model COSMO-CLM (CCLM)

Focus: Snow cover

Snow cover frequency

- As largest component of the terrestrial cryosphere
- Shapes the land surface of Siberia, prolonged cold season
- Important properties that effect climate

Multi-decadal climatology of snow parameters with regional detail

Investigate long-term regional changes of snow cover

Model Domain & Datsets

Forcing	NCEP-R1: 1948-2010
Resolution	Spatial: 0.44° (~50 km) Vertical: 40 atmospheric layers 13 soil layers (92 m)
Physical Para- meterization	Multi-layer soil and vegetation model TERRA-ML Multi layer snow model
Grid	Rotated coordinate system Number of grid points: 86 x 76

Reference Data	
Satellite- Derived Data	ESA GlobSnow - SWE Version 1.2 1987-2010 Daily L3A product
Reanalyses	NCEP-R2, NCEP-CFSR ERA-Interim

Model Domain & Datsets

RCM versus Reanalysis - Added value?

- Added value studies crucial within RCM validation
- RCM provides more detailed representation of surface boundary
- Large-scale features well resolved by global data
- Does the RCM provide more regional detail?

GlobSnow SWE as reference data

Advantage:

- Spatial coverage
- NetCDF data
- Error estimate
- Passive microwave data
- No stand-alone algorithm

CCLM

Data intercomparison:

- Remapping on lon/lat grid (-> meta data needed)
- Selection of appropriate product
 - -> use of daily data (no aggregation applied)
- Extract snow extent information from SWE

Snow cover frequency

- Snow extent important for surface albedo
- > half of region with 80-100 % in GlobSnow
- CCLM and NCEP-R1 have similar patterns no added value

Spatial distribution of SWE

- Smooth patterns in GlobSnow despite 25km resolution
- More spatial detail in CCLM than GlobSnow
- Same location of peaks in CCLM and GlobSnow

Regional variations of SWE

- No regional variation in NCEP-R1 -> CCLM add value
- January: CCLM in good agreement to GlobSnow
- April: CCLM overestimates SWE

Interannual variations of SWE

Regional monthly standarddeviation [mm], 1987-2010

- Strong variability of January mean SWE for NCEP-R2, NCEP-CFSR
- Stronger variability in April than in January except for NCEP-R2
- Low variability in NCEP-R1

Interannual variations of SWE

Monthly means [mm], 1987 - 2010

- CCLM: good agreement to ESA GlobSnow
- Temporal inconsistencies in ERA-Interim, NCEP-R2
- CCLM add more realistic information to NCEP-R1
- Strong differences between reanalyses
- Temporal consistency of CCLM is higher than in ERA-Interim, NCEP-R2

Conclusion

- Regional reconstruction of recent past climate for Siberia:
 - -> Siberian setup for regional climate model CCLM
 - -> Alternative climatology of climate parameters at regional scale
- Large-scale added-value assessment using ESA GlobSnow:
 - -> CCLM can add value in terms of SWE
 - -> in good agreement with GlobSnow in January
 - -> CCLM overestimates SWE in April
- Restrictions when using GlobSnow:
 - -> coarse patterns of GlobSnow
 - -> Missing data in mountainous regions
 - -> Wet snow, forest regions
 - -> Missing days in transition seasons
- Need:
 - -> continuity in data availability
 - -> improved performance (-> coarse patterns, consistency, metadata ...)
 - -> improved documentation

