Integration of space technologies for snow monitoring – GNSS, EO and SatCom

First results of ESA IAP SnowSense Demo Project

Florian Appel

Philipp Klug, Heike Bach

VISTA Remote Sensing in Geosciences GmbH - Munich / Germany

Patrick Henkel, Markus Lamm – ANAVS GmbH Franziska Koch, Monika Prasch, Wolfram Mauser – LMU Munich

VISTA Remote Sensing in Geosciences GmbH

Organic Certification

www.vista-geo.de

• Run-off & Hydropower forecast

SnowSense Demo Project EARSeL BERN 2017

SnowSense Background

Experience in Service
Development within
IAP TalkingFields

LUDWIG-MAXIMILIANS-UNIVERSITÂT MÜNCHEN

ESA IAP Fast Track Feasibility Study

ESA IAP DEMO PROJECT

SnowSense
Demo Project
EARSel BERN 2017

ESA IntegSpace Award 2013

GNSS for Snow Monitoring

Snow Parameter Retrieval Methodes

GPS: L1-Band / L2-Band 1.575 GHz / 1.227 GHz 32 Sats / 20.200 km Orbits 23h56m repetition

SnowSense Demo Project EARSeL BERN 2017

Snow Parameter Retrieval Methods

,			
Method:	Signal Attenuation	Signal Delay	Multipath / Reflectometry
GNSS Data	C/N ₀	Carrier Phase Differences	Signal seperation or C/N ₀
Snow Parameters	Liquid Water Content	Snow Water Equivalent Snow Depth	Snow Depth / Snow Water Equivalent
GNSS antennas	1	2	1
Sensor Constellation	One antenna below snow cover	One antenna below and one above the snow cover	One antenna above snow cover
References	Koch et al. (2014) Schmid & Koch et al. 2015	New Algorithm and Software Development LMU / ANAVS / VISTA	e.g. Larson et al., 2014, Jacobson et al., 2010, Ozeki & Heki, 2012 http://www.kristinelarson.net/publi cations/
SnowSense Demo Project			

Fundamental Results on GPS and LWC

LWC derived at the Weissfluhjoch

Melting Period 2013

SnowSense
Demo Project
EARSel BERN 2017

SnowSense as a ESA IAP Demo Project

SnowSense Overall Concept

SnowSense Demo Project EARSeL BERN 2017

SnowSense in-situ hardware – design for remote areas

- Weather independent operation
- Maintenance free during operations
- Non-Destructive Snow Parameter Retrieval
- Independent Power Supply during winter
- Intelligent Power & Operation Management
- On-Board Recording & Processing Capability
- SatCom / Terrestrial Communication Cap.
- Light weight system for transportation
- Easy installation (1-2 persons)
- Low-Cost Hardware & Low Cost operation

SnowSense
Demo Project
EARSel BERN 2017

Portable Mast System

2 GNSS antennas

Solar panel array

Electronic Box including SnowSense GNSS receivers, power management, processing and communication boards, battery pack

SnowSense In-Situ Hardware

Technical Design Issue: Recording and Communication

- On-Board Processing Capability
- SatCom / Terrestrial Communication

Data Recoding:

~ 8 MB per hour as raw data ~ 200 MB per day

On-Board Processing

low-power ARM processor

- ✓ Pre SWE algorithm
- ✓ Fast LWC algorithm
- Integr. SWE + LWC algorithm (in prep.)

SnowSense Demo Project EARSeL BERN 2017

Data Transfer via Iridium SBD service:

- ✓ 1-5 messages a day: ~ 200 bytes a day
 - ✓ Monthly data rate: < 10 kB
 </p>

Final SWE Processing at VISTA facilities

SWE Products & Maps

Daily SWE information Requirement: Weekly

Runoff and Hydropower Products from model integration

Prototype Hardware Installation Newfoundland / Canada

- Island of Newfoundland: 110.000 km²
- Exiting SWE stations: 2 public + 2 private
- Hydropower and Flood Forecast as stakeholders
- + seasonal snow survey using helicopters and snow mobiles

- ✓ Successful installation of 7 SnowSense stations in October 2015
- autonomous operation and offline recording without failure
- ✓ Hardware and Software update in November 2016 (6 Stations)
- Improved Recording Plan
- On-Board Pre-Processing (all)
- Iridium SatCom (2 locations)

Experimental and Demo Stations in Europe

- Switzerland: Weissfluhjoch (2540 m)
- Austria: Großarl (1000 m)
- Germany: Hunsrück (600 m)

+ Munich (520 m): on roof top and for soil moisture retrieval

SnowSense Demo Project EARSeL BERN 2017

SnowSense Snow Results

Results SWE from GNSS – Alpine Testsite

SWE derived at the Weissfluhjoch 2015/2016

- Continuous recording data
- Processing using the original dry snow 3h algorithm
- Dry snow precisely from derived from GNSS
- Wet Snow algorithm under implementation

SnowSense Demo Project EARSeL BERN 2017

measurements by

the SLF

Results SWE from GNSS – Newfoundland 2015/2016

SWE derived at WRMD station Sandy Lake (180m)

- 20min data recordings (now improved!)
- post-processing by inversion method

Here: No Wet Snow considerations

SnowSense Demo Project EARSeL BERN 2017

Results SWE from GNSS – Newfoundland 2015/2016

SnowSense Demo Project EARSeL BERN 2017 Results from 20min data recordings and post-processing by inversion method

No Wet Snow considerations

Demo & Training Station

Other Techniques within SnowSense Service Integration

EO Snow Monitoring: Sentinel-1 WetSnow Mapping

SnowSense
Demo Project
EARSel BERN 2017

Results Modelled SnowWaterEquivalent – Newfoundland 2016/2017

SWE derived for WRMD station Sandy Lake

SnowSense Summary

- > GNSS 2 antenna technique is able to measure relevant snow parameters
 - > Perfect correlation with measured **Snow Water Equivalent for Dry Snow**
 - ➤ **Liquid Water Content** is independently obtained form GNSS signal
 - > Wet Snow SWE algorithm close to implementation
- > SnowSense In-Situ Sensor Hardware successfully proven in different locations
- > EO Service, Model Integration and Service Provision as prototype applied
- > Full Demo planned for Winter 2017/2018 in Newfoundland (SWE & Runoff)
- > Further developments, applications and collaborations in preparation
- > Hardware and Service soon ready for the market

appel@vista-geo.de

SnowSense
Demo Project
EARSel BERN 2017

VISTA Remote Sensing in Geosciences GmbH D-80333 Munich

www.vista-geo.de/snowsense/

www.facebook.com/SnowSenseDemo/