Thomas Nagler, Helmut Rott, Elisabeth Ripper and Gabriele Schwaizer

Outlook

- Algorithm for Snow Mapping by Sentinel-1 SAR IW mode data
- Examples and Validation of Algorithm in Alps and Northern Latitudes
- Prototype snow extent algorithm for Sentinel-3 optical sensors
- Combination of S1 and S3 snow products
- Conclusions

Observational Requirements and SAR Products

Observational requirements for satellite-based snow extent products for operational hydrology and climate research (IGOS Cryosphere

Theme Report):

Spatial resolution: 100 m

Revisit time: 1 day (during melting period)

Product type of the current satellite-based C-band SAR Systems:

- Extent of snow melt area → based on backscatter sensitivity to wet snow
- C-band SAR backscatter is not suitable for operational monitoring of dry snow areas → very limited sensitivity to dry snow.

Groundbased Backscatter Signatures – Leutasch/Alps

Sentinel-1 Backscatter Ratios High Alpine Test site Ötztal

Backscatter ratio (median, Mdn, 1st and 3rd quartile) for Sentinel-1 *VV*- and *VH*- polarized channels in dependence of the local incidence angle, θ , for test area Ötztal.

Sentinel-1
Dual Pol
Wet Snow
Mapping
Method

(Nagler et al. 2016; Rem. Sens., 2016, 8(4), 348, doi:10.3390/rs8040348)

Sentinel-1 and Sentinel-3 Sensor Overview

Polarisation	Dual ($HH + HV, VV +$	VH)
Access (incidence angles)	31°-46°	Mode
Azimuth resolution	<20 m	Mo
Ground range resolution	<5 m	
Azimuth and range looks	Single	<u>></u>
Swath	>250 km	SAR
Maximum NESZ	-22 dB	S
Radiometric stability	$0.5 \mathrm{dB} (3\sigma)$	S
Radiometric accuracy	$1 \text{ dB } (3\sigma)$	

Global Land (Status): 12 days repeat coverage wit IW mode; some regions 6-days

esa

OLCI (Ocean and Land Colour Instrument)

- > Swath width: 1270 km, with 5 tilted cameras
- > Spatial sampling: 300 m @ SSP
- > Spectrum: 21 bands [0.4-1.02] μm

SLST (Sea and Land Surface Temperature)

- > Swath width: dual view scan, 1675 km (nadir) / 750 Km (backwards)
- > Spatial sampling: 500 m (VIS, SWIR), 1 km (MWIR, TIR)
- > Spectrum: 9 bands [0.55-12] μm

Optionally for S3: Metop- SG VII

Sentinel-1 IW Swath Product

Example of S1 Snow Melt and Landsat TM Snow Extent – Ötztal Alps

	R_{vv}		R_{vh}			R_c			
	S1-S	S1-F	AR	S1-S	S1-F	AR	S1-S	S1-F	AR
LS-S	80.7	19.3		94.5	6.4		94.7	5.3	
LS-F	4.2	95.8		5.3	94.7		3.2	97.8	
			0.882			0.946			0.962

Confusion matrix for the classes snow (S) and snow-free (F) in Ötztal test site, for snow classification based on Landsat (LS) and Sentinel-1 (S1) data. AR — overall agreement rate $(0.0 \le AR \le 1.0)$.

Validation site for S1 Snow melt product Swiss Alps

Sentinel-1, 7 June 2015;

АЗ

Confusion matrix for the classes snow (S) and snow-free, for snow classification based on Landsat (LS) and Sentinel-1 (S1) data. AR — overall agreement rate $(0.0 \le AR \le 1.0)$.

		R_{vv}			R_{vh}			R_c	
	S1-S	S1-F	AR	S1-S	S1-F	AR	S1-S	S1-F	AR
LS-S	80.7	19.3		94.5	6.4		94.7	5.3	
LS-F	4.2	95.8		5.3	94.7		3.2	97.8	
			0.882			0.946			0.962

АЗ

Sentinel-1A Wet Snow Maps - Dual Pol Algorithm

Derived from 4 tracks

Validation Site for S1 Snow Melt and Landsat TM Snow Extent – Tröllaskagi Peninsula, Iceland

		R_{vv}	R_{vh}			_	R_c		
	S1-S	S1-F	AR	S1-S	S1-F	AR	S1-S	S1-F	AR
LS-S	92.8	7.2		92.6	7.4		94.6	5.4	
LS-F	2.0	98.0		0.2	99.8		0.2	99.8	
			0.954			0.962			0.972

Confusion matrix for the classes snow (S) and snow-free, for snow classification based on Landsat (LS) and Sentinel-1 (S1) data. AR — overall agreement rate $(0.0 \le AR \le 1.0)$.

Monitoring melting snow using Sentinel-1 SAR

Concept for SENTINEL-3 Snow Mapping using SLSTR and OLCI

<u>Sentinel-3:</u>

SLSTR (follow on of AATSR): 0.5 – 1.6, -3.7 μm + TIR 500 m / 1 km

OLCI (follow on of MERIS): 0.4.-1.2 μm; 300 m

Daily Global Coverage

Fractional Snow Extent estimated using multi-spectral algorithm

Combining fractional snow extent maps with melting snow area maps

Conclusions

- A dual pol (Co-, Cross) Snow Melt Algorithm for Sentinel-1 IW was developed and validated in Alps and Northern Latitudes, shows a very high agreement with snow maps from high resolution optical data.
- Due to the high spatial resolution and frequent repeat coverage,
 Sentinel-1A & 1B time series of snowmelt area are of great interest for applications in hydrology and water management.
- Synergy of Sentinel-1 and -3 sensors is a powerful approach for comprehensive snow monitoring in terms of repeat coverage and snow pack state.

\$1-4\$CI SNOW - DEVELOPMENT OF PAN-EUROPEAN MULTI-SENSOR SNOW MAPPING METHODS EXPLOITING \$1

ESA SEOM Study - Dec 2016 - Nov 2018

PRIMARY OBJECTIVES

- Develop, implement and validate methods for generating maps of snowmelt area based on SAR data of the S-1 mission
- Combination of S-1 wet snow products with snow products from optical sensors of S-2 and S-3
- Use developed algorithm to generate pan-European snow maps from S-1 and S-3

CONSORTIUM

ENVEO IT GmbH, Innsbruck, Austria (Principle Investigator)

Finnish Meteorological Institute, Helsinki, Finland

University of Zurich, Zurich, Switzerland

Finnish Environment Institute, Helsinki, Finland

Norut, Tromsö, Norway