Variability in Glacier Flow Dynamics of a Greenland Outlet Glacier Using Sentinel-1 SAR Data: Validation with Multiple Ground-based Measurements

Christoph Rohner¹, David Small¹, Martin Lüthi², Andreas Vieli²

Remote Sensing Laboratories¹/Glaciology and Geomorphodynamics Group²
Department of Geography
University of Zurich, Switzerland
www.geo.uzh.ch

February 9, 2017
Area of Interest: Eqip Sermia
Area of Interest: Eqip Sermia

- Medium sized ocean terminating outlet glacier
- Calving Front Width: 3.5 km
- Calving Front Height: 30 - 50 m
- Well documented history with surveys of geometry and velocity starting in 1912

Photo: A. Vieli
Aim of Study

• Extraction of glacier displacements from multi-orbit radar imagery at high spatio-temporal resolution

• Validation of results using multiple ground-based measurements

• Modeling of calving based on fracture and damage mechanics using derived flow dynamics to constrain certain model parameters
Data

Spaceborne
- Sentinel-1A/1B
 - 6/12 day repeat orbit
 - C-Band SAR (5.405 GHz)
 - Dual Polarization
 - Interferometric Wide Swath Mode
 - Pixel Spacing SLC: 2.3 x 17.4 m
 - Pixel Spacing GRDH: 10 x 10 m
 - Continuous data since 10/2014

- Radarsat-2
 - 24 day repeat cycle
 - C-Band SAR (5.405 GHz)
 - Quad-Polarization
 - Fine Quad/Ultra-Fine Wide Mode
 - Pixel Spacing FQ: ~5 x 5 m
 - Pixel Spacing UW: ~1.5 x 2.5 m
 - 13 FQ/7 UW scenes
Data

Field Measurements

• **eBee Drone**
 - Wing-span: 1 m
 - Weight: 700 g
 - Area/flight: ~3 km²
 - Pixel Spacing: 15 – 20 cm
 - 3 data acquisitions in 2016 over glacier tongue covering ~12.5 km²

• **GPS Trackers**
 - Single-frequency GPS receiver, differential carrier-phase technique
 - GPS solutions calculated at 3 h/6 h/1 day intervals at the Geodesy and Geodynamics Lab of ETH Zürich (see Wirz et al., 2014)
 - 1 base station, 5 trackers on the glacier between 29/06/2016 – 25/08/2016

Field Measurements (cont.)

- **GAMMA Portable Radar Interferometer**
 - Frequency: 17.2 GHz
 - Displacement sensitivity: ~1 mm
 - Range Resolution: ~0.75 m
 - Azimuth Resolution: 14 m @ 2 km
 - Sampling frequency: 1 min\(^{-1}\)
 - Interferogram/amplitude image as result
 - Data acquired continuously for 7 days in 2016
Data

- S1/RS2 Extent
- GPRI Extent
- eBee Extent
- GPS Trackers

Source: Landsat 8 (USGS)
Method – Intensity Tracking

Sentinel-1 Image Pair → Reference Window Size 25 x 25 px → Amplitude Match

- Increase Window Size by 10 px

- Window Size > 65 px
 - Yes: No Match
 - No: Outlier?
 - Yes: No Match
 - No: x-/y-Offsets

- Velocity Map

Reference Window Size

University of Zurich

RSL
measurements | products | policy
Results – Velocity Maps

Median Glacier Flow Field between 2014/09/23 - 2014/10/30

Sources:
Landsat-8, USGS
Contains modified Copernicus Sentinel data (2014)
Results – Intensity Tracking based Flow Velocity (Sentinel-1/Radarsat-2) vs. GPS

• GPS data processing according to Ahlstrøm et al. (2013)
• GPS Tracker EG09: good agreement with derived flow velocities
• EG19: Due to slow flow velocity (~1 m/d)/ 10 m pixel spacing not feasible for 12 days, but good agreements with 24 day baseline
• Errors in range of Ahlstrøm et al. (2013)

• General good agreement between offset tracking results and reference data from ESA GrIS CCI
• Bigger differences close to calving front with flow speeds >10 m/d

Results – Derived Velocities S1 vs. ESA Greenland Ice Sheet CCI Product

- General good agreement between offset tracking results and reference data from ESA GrIS CCI
- Bigger differences close to calving front with flow speeds >10 m/d

Results – Derived Velocities S1/RS2 vs. eBee

- Good agreement despite differences in resolution, temporal baseline and raw data
- Limitations of SAR close to calving front due to mixed pixels (sea/glacier) and incoherent flow pattern
Conclusion & Outlook

- Spatially detailed surface motion estimates obtainable from currently operational spaceborne systems

- Combination of air- and spaceborne acquisitions allows for high resolution flow field up to calving front

- Six-day repeat of Sentinel-1 constellation offers possibility for analysis of short-term variability of ice flow and more reliable results at the calving front

- Inclusion of interferometric GPRI data as additional ground-truth measurements at high spatio-temporal resolution
Acknowledgements

Swiss National Science Foundation (Project #156098)

Copernicus Sentinel Programme

MDA/CSA SOAR Programme (Project #16821)