

Processing Line For Monitoring Glacier Outlines & Snow Area Extent By Means Of Sentinel-2 Data

Gabriele Schwaizer, Johanna Nemec, Helmut Rott, Thomas Nagler

enveo

Some facts about Sentinel-2

Improvements compared to other high resolution optical satellite data:

Sentinel-2 provides a great new data basis for regular monitoring of glacier areas and glacier surface zones

Commonly used methods for mapping enveloped glacier areas in the past years

Some preliminary glacier areas resulting from the standard methods

Objectives

- Find and test a method for mapping glacier zones from Sentinel-2 data, independently of the atmospheric and topographic conditions at the acquisition time
- Reduce manual workload during and after the preliminary glacier map generation as far as possible
- Update the Austrian Glacier Inventory (2015/16) (will be made available to the public via the GLIMS data base)

Advanced preparation of glacier area and glacier zone maps

Selected data base

- Two Sentinel-2 scenes over the region Hohe Tauern (AT/IT) (R022, T32TQT)
- EU Digital elevation model (30 m), topographic parameters from a national DEM (10 m) showed partly significant shifts compared to S2 data → ESA is working on improving the geolocation
- Atmospheric data from Copernicus Atmospheric Monitoring Service (CAMS), provided by ECMWF

2016-08-27

Gabriele Schwaizer, EARSeL LISSIG WS

Atmospheric and topographic correction

SMAC & Ekstrand correction

Advanced physical atmospheric and topographic correction (based on 6S altitude dependent LUTs)

Generation of glacier outlines from Sentinel-2 data

- Automated classification module applied on surface reflectance maps:
 - Combine multiple band ratios to discriminate snow and ice from other surface classes
 - Filtering processes
 - Automated masking of water bodies
 - Minimum altitude of glacier area from digital elevation model
 - → STILL MISSING: Cloud screening method
- Manual mapping of debris cover glacier parts from surface reflectance maps

Glacier outlines from Sentinel-2 (update of Austrian Glacier Inventory)

Glacier zones from spectral surface reflectances

Glacier zones from spectral surface reflectances

Example of advanced glacier zones (Glocknergruppe, 13 August 2015)

Comparison of snow areas from different sensors & times

Summary and Outlook

- Advanced fully automated pre-processing of Sentinel-2 data implemented
 - → atmospheric and topographic correction method to generate spectral surface reflectance in complex terrain
- Advanced automated classification of glacier areas and glacier surface zones based on spectral surface reflectances

 → ESA Glacier CCI Option 3 on late summer snow line and glacier zones
- Minimum effort for manual post-corrections (large snow patches, debris covered areas, pre-glacial lakes)
- Sentinel-2 data of August 2015/16 analysed to update the Austrian Glacier Inventory (data will be provided to the public via the GLIMS data base soon)