
The Potential of Low-Cost UAVs and Open-Source 
Photogrammetry Software for High-  
Resolution Monitoring of Alpine Glaciers: A Case 
Study from the Kanderfirn (Swiss Alps)  

Thalia Bertschinger, Alexander Groos 
Institute of Geography 
University of Bern 

04.02.2020, 9th EARSeL Workshop on Land Ice and Snow 



2 

02.10.2009, S. Oberli 



3 

15.09.2018, S. Oberli 



Introduction 

4 



Research Goals 
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>  Investigation of glacier surface changes (with regards to content) 

>  With low-cost UAVs and open-source photogrammetry software 

(methodical goal) 



Study Area Kanderfirn 
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Study Area Kanderfirn 

Glacier Tongue: 
2330 m ü. M. 
Petersgrat: 
3202 m ü. M. 
Area (2018): 
11.9 km2 
Ø Temperature: 
2.8 ℃ 
Ø Precipitation: 
826 mm 
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e.g., for plugging the rc-receiver, motor controllers, GPS module, telemetry modem and any other
kind of sensor supported by SPI (Serial Peripheral Interface), I2C (Inter-Integrated Circuit) or UART
(Universal Asynchronous Receiver Transmitter) protocol. An 11.1 V lithium polymer battery with
5000 mAh powers the whole system and enables flight times of up to 45 min, mainly depending on the
vertical distance to climb. Since the payload of the UAV is limited to ca. 250 g, we equipped it with a
lightweight 12-megapixel digital camera (GoPro Hero 5 Black, weight: 120 g, lens focal length: 3.0 mm,
sensor dimensions: 6.17 ⇥ 3.47 mm, resolution: 4000 ⇥ 3000 pixel). The take-o↵-weight of the UAV
(including camera and battery) was less than 2 kg.
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Flight planning and monitoring was accomplished using the Paparazzi software environment, 
which provides a graphical user interface (Paparazzi Center) to program and configure the autopilot 
controller firmware and user-specific flight plans. After flashing the firmware and flight plan, the 
UAV was ready for take-off once all pre-flight-checks were successful. Paparazzi supports three 
different flying modes: manual flying by remote control, no intervention of the autopilot (“manual”); 
manual flying by remote control, but autopilot is assisting for stabilisation of the UAV (“auto1”); 
autonomous flying by executing a predefined flight plan (“auto2”). The autonomous flight can be 
simulated and monitored in Paparazzi using the ground control station’s (GCS) graphical interface 
(Figure 3). 

 

Figure 2. Setup of the low-cost UAV (flying wing model).

Flight planning and monitoring was accomplished using the Paparazzi software environment,
which provides a graphical user interface (Paparazzi Center) to program and configure the autopilot
controller firmware and user-specific flight plans. After flashing the firmware and flight plan, the UAV
was ready for take-o↵ once all pre-flight-checks were successful. Paparazzi supports three di↵erent
flying modes: manual flying by remote control, no intervention of the autopilot (“manual”); manual
flying by remote control, but autopilot is assisting for stabilisation of the UAV (“auto1”); autonomous
flying by executing a predefined flight plan (“auto2”). The autonomous flight can be simulated and
monitored in Paparazzi using the ground control station’s (GCS) graphical interface (Figure 3).
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(Illustration by Céline Kummer) 
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Conclusions 

>  Self-built fixed-wing UAVs in tandem with open-source photogrammetry software 

are a powerful low-cost tool to obtain remotely sensed geodata in high spatial 

and temporal resolution 

>  Pronounced surface melting of the Kanderfirn during summer 2018: optical 

glacier surface structure transformations, negative height changes over the 

whole glacier tongue, brightness decreased, roughness increased 

>  ODM: high-resolution orthophotos and DSMs but the accuracy has not yet 

reached the one of proprietary software ! worst point: georeferencing ! work in 

progress! 
26 



Outlook 
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>  Continue monitoring of the Kanderfirn: 

•  Longer time series 

•  Overflight of the whole area at one point in time 

•  Meteorological flights for boundary layer investigations 

>  Investigations in other areas of the world 
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Thank You! 

(Pigeon Photography 
around 1907) 



>  alexander.groos@giub.unibe.ch 

>  Groos, A. R., Bertschinger, T. J., Kummer, C. M., Erlwein, S., 
Munz, L., & Philipp, A. (2019). The Potential of Low-Cost 
UAVs and Open-Source Pho- togrammetry Software for High-
Resolution Monitoring of Alpine Glaciers: A Case Study from 
the Kanderfirn (Swiss Alps). Geosciences, 9(8), 356.  
 ! https://doi.org/10.3390/geosciences9080356  
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Schlussfolgerungen 

>  Der Kanderfirn hat im Sommer 2018 an Höhe verloren. Die modellierte 

Oberflächenmassenbilanz ist ebenfalls deutlich negativ. 

>  Die aktuell erreichte Qualität der Orthophotos und DSMs lässt qualitative 

Schlussfolgerungen über Strukturänderungen der Gletscheroberfläche zu, eine 

Quantifizierung der Höhenänderung ist jedoch mit Unsicherheiten verbunden. 

>  Die Kombination von hochaufgelösten Höhenmodellen und dem Massenbilanzmodell 

bringt Vorteile. (Stärken einer Methode gleichen Schwächen der anderen aus)  

>  Potential zur Verbesserung: Flugplan, Prozessierung in OpenDroneMap, Inputdaten 

im Massenbilanzmodell, Masseneintrag von Lawinen.... 
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