

The Potential of Low-Cost UAVs and Open-Source Photogrammetry Software for High-Resolution Monitoring of Alpine Glaciers: A Case Study from the Kanderfirn (Swiss Alps)

Thalia Bertschinger, Alexander Groos Institute of Geography University of Bern

04.02.2020, 9th EARSeL Workshop on Land Ice and Snow

$u^{^{\mathsf{b}}}$

b UNIVERSITÄT BERN

Introduction

Research Goals

- > Investigation of glacier surface changes (with regards to content)
- With low-cost UAVs and open-source photogrammetry software (methodical goal)

Study Area Kanderfirn

Glacier Tongue: 2330 m ü. M.

Petersgrat: 3202 m ü. M.

Area (2018): 11.9 km²

Ø Temperature: 2.8 °C

Ø Precipitation: 826 mm

b UNIVERSITÄT BERN

Study Area Kanderfirn

08. August 2018

Materials and Methods

u^{b}

b UNIVERSITÄT BERN

Materials and Methods

u'

Materials and Methods

Results and Discussion

OpenDroneMap Orthophoto 28./29. August 2018

u^{b}

b UNIVERSITÄT BERN

Results and Discussion

$oldsymbol{u}^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN

Results and Discussion

$u^{^{b}}$

Results and Discussion

Date	Software	Version	GCPs	GVPs	XY RMSE (m)			Z RMSE (m)		
Date	Software				GCP	GVP	Total	GCP	GVP	Total
27 September 2017	ODM	0.4.1	6	4	1.5	1.2	1.4	1.0	0.6	0.9
3 June 2018	ODM	0.4.1	6	4	0.8	0.7	0.8	0.7	0.8	0.7
3 June 2018	Pix ₄ D	4.3.31	6	4	0.4	0.7	0.6	0.3	0.4	0.3
30 June 2018	ODM	0.4.1	9	3	1.9	0.5	1.7	2.3	1.2	2.1
28 /29 August 2018	ODM	0.4.1	22	5	1.6	1.0	1.5	2.1	0.9	1.9
29 September 2018	ODM	0.4.1	4	3	0.8	0.8	0.8	0.9	0.9	0.9
29 September 2018	Pix ₄ D	4.3.31	4	3	0.3	0.4	0.3	0.2	0.7	0.5

Conclusions and Outlook

$u^{^{\mathsf{b}}}$

Conclusions

- > Self-built fixed-wing UAVs in tandem with open-source photogrammetry software are a powerful low-cost tool to obtain remotely sensed geodata in high spatial and temporal resolution
- Pronounced surface melting of the Kanderfirn during summer 2018: optical glacier surface structure transformations, negative height changes over the whole glacier tongue, brightness decreased, roughness increased
- > ODM: high-resolution orthophotos and DSMs **but** the accuracy has not yet reached the one of proprietary software → worst point: georeferencing → work in progress!

u'

Outlook

- > Continue monitoring of the Kanderfirn:
 - Longer time series
 - Overflight of the whole area at one point in time
 - Meteorological flights for boundary layer investigations
- > Investigations in other areas of the world

UNIVERSITÄ BERN

Further Information

- > alexander.groos@giub.unibe.ch
- Scroos, A. R., Bertschinger, T. J., Kummer, C. M., Erlwein, S., Munz, L., & Philipp, A. (2019). The Potential of Low-Cost UAVs and Open-Source Pho- togrammetry Software for High-Resolution Monitoring of Alpine Glaciers: A Case Study from the Kanderfirn (Swiss Alps). Geosciences, 9(8), 356.
 - → https://doi.org/10.3390/geosciences9080356

u^{b}

Materials and Methods

Date	Flight No.	Start Time (hh:mm)	Flight Time (hh:mm)	Flight Altitude (m a.g.l.)	Area (km²)	Images (selected)	Resolution (cm / pixel)
27 September 2017	1	16:26	00:14	140 ± 10	0.7	1242 (314)	7.2 ± 0.5
3 June 2018	1	14:37	00:16	140 ± 10	0.7	913 (347)	$\textbf{7.2} \pm \textbf{0.5}$
30 June 2018	1	15:03	00:16	120 ± 10	0.8	972 (249)	6.2 ± 0.5
30 June 2018	2	18:02	00:16	135 ± 20	0.8	952 (228)	6.9 ± 1.0
28 August 2018	1	13:27	00:15	120 ± 10	0.8	883 (210)	6.2 ± 0.5
28 August 2018	2	15:24	00:16	135 ± 20	0.8	935 (210)	6.9 ± 1.0
28 August 2018	3	17:14	00:17	135 ± 20	0.8	992 (217)	6.9 ± 1.0
29 August 2018	1	12:20	00:17	135 ± 20	0.8	1036 (213)	6.9 ± 1.0
29 September 2018	1	10:51	00:11	120 ± 10	0.8	668 (215)	6.2 ± 0.5
29 September 2018	2	16:15	00:01	120 ± 10	< 0.1	70 (0)	6.2 ± 0.5

$u^{^{\mathsf{b}}}$

UNIVERSITÄ BERN

Schlussfolgerungen

- Der Kanderfirn hat im Sommer 2018 an Höhe verloren. Die modellierte Oberflächenmassenbilanz ist ebenfalls deutlich negativ.
- Die aktuell erreichte Qualität der Orthophotos und DSMs lässt qualitative Schlussfolgerungen über Strukturänderungen der Gletscheroberfläche zu, eine Quantifizierung der Höhenänderung ist jedoch mit Unsicherheiten verbunden.
- > Die Kombination von hochaufgelösten Höhenmodellen und dem Massenbilanzmodell bringt Vorteile. (Stärken einer Methode gleichen Schwächen der anderen aus)
- Potential zur Verbesserung: Flugplan, Prozessierung in OpenDroneMap, Inputdaten im Massenbilanzmodell, Masseneintrag von Lawinen....

Stake	Lat (°N)	Lat (°E)	Elevation (m)	Start Date	End Date	Period (d)	Ablation (cm)	Ablation (cm d ⁻¹)
0	46.4663	7.7735	2363	30 June 2018 13:00	23 October 2018 11:40	114.9	549	4.8
10	46.4675	7.7754	2414	3 June 2018 15:00	23 October 2018 11:30	141.9	648	4.6
11	46.4674	7.7755	2413	3 June 2018 15:00	23 October 2018 11:25	141.9	610	4.3
12	46.4675	7.7752	2413	30 June 2018 11:50	23 October 2018 11:35	115.0	521	4.5
20	46.4697	7.7771	2444	30 June 2018 16:50	23 October 2018 11:00	114.8	443	3.9
21	46.4688	7.7786	2437	30 June 2018 16:15	23 October 2018 11:15	114.8	489	4.3
22	46.4704	7.7759	2446	30 June 2018 17:10	23 October 2018 11:05	114.7	509	4.4
30	46.4770	7.7875	2544	24 July 2018 14:15	23 October 2018 10:20	90.8	347	3.8
40	46.4807	7.8002	2633	8 August 2018 15:15	23 October 2018 09:50	75.8	204	2.7
41	46.4790	7.8016	2632	24 July 2018 15:30	23 October 2018 10:00	90.8	335	3.7
42	46.4821	7.7980	2641	8 August 2018 15:45	23 October 2018 09:45	75.8	284	3.7
50	46.4826	7.8118	2735	8 August 2018 16:30	23 October 2018 09:30	75.7	186	2.5
60	46.4806	7.8227	2843	9 August 2018 09:30	23 October 2018 09:00	75.0	136	1.8

7.

Ablation Stake 00 - 60

$u^{^{b}}$

Ablation Stake 10

