

UNIVERSITÄT BERN

CLIMATE CHANGE RESEARCH

# Regional snowline elevation retrieval using public webcam images

Céline Portenier, Stefan Wunderle

Institute of Geography and Oeschger Centre for Climate Change Research, University of Bern



UNIVERSITA

- Important indicator of snow cover in mountainous regions
- Input for hydrological modeling or cloud removal in satellite-based snow cover retrieval



### Public webcams

- high spatio-temporal resolution
- high areal coverage
- view below cloud cover
- oblique view on mountains

























### Public webcams

- high spatio-temporal resolution
- high areal coverage
- view below cloud cover
- oblique view on mountains
- low quality images





























### Public webcams

- high spatio-temporal resolution
- high areal coverage
- view below cloud cover
- oblique view on mountains
- low quality images
- missing camera information!

























Semi-automatic procedure to derive snow cover maps from publicly available webcam images

- 1. Preprocessing
- 2. Image-to-DEM registration
- 3. Image-to-image alignment
- 4. Snow classification











D UNIVERSITÄT RERN

OESCHGER CENTRE

### 2. Image-to-DEM registration

### Input

- Webcam location
- Master Image
- High-resolution DEM

### Output

Transformation matrix





### 3. Image-to-image alignment

- Solving for homography
- Scale Invariant Feature Transform (SIFT; Lowe, 2004)
- fitting model RANdom SAmple Consensus (RANSAC; Fischler and Bolles, 1981)







D UNIVERSITÄT BERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

#### 4. Snow classification

- Blue band classification (Salvatori et al. 2011)
  - → blue band frequency histogram, threshold at first local minimum above intensity value 127
- Blue band + PCA (Härer et al. 2016)
  - → PCA to detect shaded snow cover







UNIVERSITÄ BERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

#### **Snow cover maps**

- transformation matrix is used to find for each DEM grid the associated image pixel
- for each DEM grid, the associated classification result ('snow', 'no snow') is set













# $u^{\scriptscriptstyle b}$

D UNIVERSITÄT RERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

### **Projection uncertainty**

- image pixel can be mapped onto several DEM grid cells, depending on:
  - image resolution
  - FOV
  - distance of the terrain to the webcam
  - slope and orientation of the terrain



b UNIVERSITÄT BERN

OESCHGER CENTRE

### **Projection uncertainty**

Projected image pixel resolution





# $u^{^{\scriptscriptstyle b}}$

b UNIVERSITÄT BERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

### **Projection uncertainty**

- Projected image pixel resolution
  - $\rightarrow$  45 webcams: mean projected pixel resolution: 4.5 ± 4.4 m.
  - $\rightarrow$  DEM grids within distance < 20 km to webcams: 2.9 ± 1.5 m.

# $u^{^{\scriptscriptstyle b}}$

D UNIVERSITÄT RERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

### **Registration accuracy**

- 142 GCPs, 20 webcams
- RMSE of 23.7m (14.1m if excluding wide-angle lens webcams)

# $u^{^{\scriptscriptstyle b}}$

D UNIVERSITÄT RERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

### **Registration accuracy**

- 142 GCPs, 20 webcams
- RMSE of 23.7m (14.1m if excluding wide-angle lens webcams)
- → precise enough to validate satellite-derived snow cover maps..?

# **Applications**



b UNIVERSITÄT BERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

Validation of satellite-based snow cover maps





# **Applications**

- $u^{t}$
- b UNIVERSITÄT BERN
- OESCHGER CENTRE
  CLIMATE CHANGE RESEARCH

- Validation of satellite-based snow cover maps
- Complement satellite-based snow cover information







b UNIVERSITÄT BERN

 $u^{^{\scriptscriptstyle b}}$ 

UNIVERSITÄ BERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

RSLE estimation method proposed by Krajčí et al. (2014)

 $\rightarrow$  find elevation (RSLE) for which the sum of snow covered pixels below (P<sub>s</sub>) and land pixels above (P<sub>1</sub>) the RSLE is minimized









UNIVERSITÄT BERN



















b Universität Bern











UNIVERSITÄT Bern





UNIVERSITÄT BERN

OESCHGER CENTRE





UNIVERSITÄT BERN





UNIVERSITÄT BERN





# $u^{^{\scriptscriptstyle b}}$

D UNIVERSITÄT BERN

OESCHGER CENTRE





# $u^{t}$

# Regional snowline elevation (RSLE)

Smaller elevation range, low number of webcams







UNIVERSITÄT BERN





UNIVERSITA BERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

#### Snow misclassification

 shadows, low light situations, bright rock surfaces

31 March: underestimation → both methods fail

Webcam image



Blue-band (Salvatori et al., 2011)



Blue-band + PCA (Härer et al., 2016)





b UNIVERSITÄT Bedn

OESCHGER CENTRE

#### Snow misclassification

 shadows, low light situations, bright rock surfaces

26 June: overestimation

Blue-band + PCA (Härer et al. 2016)





UNIVERSITÄT BERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

#### Clouds vs. snow







UNIVERSITÀ

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

Clouds vs. snow



SnowNet - a deep learning approach for automatic snow and cloud classification in public webcam images (in preparation)

→ train a deep convolutional neural network that considers an entire image patch instead of only a small local neighborhood to predict a single pixel





b Universität Bern

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

- Webcams offer huge potential to analyze small-scale variability of snowline on a high spatiotemporal resolution
  - → detailed analyses, especially during spring snowmelt period or long-lasting cloud cover
- Need for improved snow classification and cloud detection
- Combining webcam-based snow cover information with satellite-based snow cover information

#### References:

Härer, S., Bernhardt, M., and Schulz, K.: PRACTISE – Photo Rectification And ClassificaTlon SoftwarE (V.2.1), Geosci. Model Dev., 9, 307–321, https://doi.org/10.5194/gmd-9-307-2016, 2016

Lowe, D.G.: Distinctive image features from scale-invariant key points. Int. J. Comput. Vis., 60, 91-110. doi: 10.1023/B:VISI.0000029664.99615.94, 2004.

Portenier, C., Hüsler, F., Härer, S., and Wunderle, S.: Towards a webcam-based snow cover monitoring network: methodology and evaluation, The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-142, in review, 2019.

Salvatori, R., Plini, P., Giusto, M., Valt, M., Salzano, R., Montagnoli, M., Cagnati, A., Crepaz, G., and Sigismondi, D.: Snow cover monitoring with images from digital camera systems, Ital. J. Remote Sens., 43, 137–145, https://doi.org/10.5721/ItJRS201143211, 2011.