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Abstract.  The classification and mapping of habitats in Wadden Sea areas is an important issue of 
marine monitoring. In the framework of a German research project, we investigate different    
modern remote sensing data for this task. In this paper, our focus is on the potential of airborne   
laser scanning data for the classification. Therefore, we use Conditional Random Fields (CRF),     
a probabilistic supervised classification approach capable of modelling context. We classify the  
laser scanning point cloud into the three object classes water, mudflat, and mussel bed.                
For the  distinction of different surface types we analyse crucial classification features based on the         
geometry and the intensity of the backscatter. We then learn typical structures in a training step 
and combine local descriptors with context information in a CRF framework. We evaluate our    
approach on a test site of the German part of the Wadden Sea and show classification results of 
multispectral and SAR data which we intend to combine for a marine monitoring concept.  
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1. Introduction 

The Wadden Sea is a unique habitat in the southeastern part of the North Sea. Due to its biological 
diversity, in 2009, the German and the Dutch part of the Wadden Sea were inscribed on UNESCO's 
World Heritage List. However, it is influenced by climate change and human activities. For these 
reasons a recurrent monitoring of these areas becomes necessary. Therefore, new approaches for a 
sustainable monitoring are investigated in a German research project called Scientific Monitoring 
Concepts for the German Bight [1]. In this framework, we investigate the habitat mapping and   
classification of Wadden Sea areas in regard to a deeper understanding of the habitat composition. 
For the eulittoral zone, which is covered with seawater during high tide, but falls dry during low 
tide, the different habitats can be classified from remote sensing data. Thereby, we use three types 
of remote sensing data: SAR data, optical images, and airborne laser scanning data, also called    
LiDAR (Light Detection and Ranging). We classify data separately so far, but we aim at a         
combined classification approach. In this paper, our focus is on the classification of LiDAR data, 
which is necessary for two reasons.  

Firstly, tidal flows, storms, climate change, and human activities cause morphological changes 
of various kinds. The morphology of the terrain can be represented by digital terrain models (DTM). 
The acquisition of highly accurate height data by laser scanning, however, is limited to the water 
surface because the near-infrared laser pulses cannot penetrate water. The generation of a DTM thus 
requires the detection of water surfaces within tidal channels, where residual water can remain even 
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during low tide. An additional data source, e.g. sonar, can be used to complete the DTM in these 
areas. This leads to the first crucial classification of LiDAR data into land and water areas. 

Secondly, we are interested in the contribution of LiDAR data for the habitat mapping. This    
involves a separation of the class land into different subclasses. This has been shown to be possible 
with spectral information from remote sensing image data [2]. For classification based on        
monochromatic LiDAR, the distinction between the habitats is a difficult task, due to the lack of 
spectral features. On the other hand, besides the purely geometric measurement of 3D coordinates, 
modern LiDAR systems record also the intensity of the backscatter, which can provide information 
about additional target characteristics like roughness. In regard to the properties of LiDAR, only 
habitats characterised by their surface roughness, e.g. mussel beds, can be expected to be             
distinguished. Thus, we differentiate two subclasses of land, namely mudflat and mussel bed.  

Figure 1 shows a high-resolution orthoimage and the LiDAR point cloud of our test site, a    
typical scene in the German Wadden Sea.  It contains several mussel beds, which are characterised 
by a dark colour in the orthoimage (e.g. in the middle of the scene) and high elevation in the point 
cloud. In some parts of the water areas, e.g. the big water-filled tideway from west to east, no   
backscatter is recorded due to specular reflection of the laser pulse. In these regions lots of gaps in 
the point cloud occur.  

In this paper, we present a supervised classification approach for LiDAR data in Wadden Sea 
areas. We distinguish the three classes water, mudflat, and mussel bed. Those objects, their typical 
structures, and interrelations are integrated in the classification process. Therefore, we use a       
Conditional Random Fields (CRF) framework. We focus on the extraction of optimal features for 
the classification of Wadden Sea areas and on the implementation of a CRF framework for LiDAR 
point cloud.   

 

 
 

 
Figure 1: Orthoimage and point cloud (coloured by height from low (blue) to high (red)) of the test site in the German 

Wadden Sea. Because of specular reflection the number of laser pulses without any received return can be significantly 
higher in water surfaces (black). 
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2. Method 

Our aim is to classify the LiDAR data by assigning a class label to each point in the point cloud. 
Because of the rather homogeneous appearance of the Wadden Sea, which mainly consists of flat 
areas with hardly any discriminative objects, the classification becomes challenging. Therefore, the 
classification task results in two crucial aspects. On the one hand, we need appropriate classification 
features for the distinction of different classes in this special test data. The feature extraction is    
investigated in Section 2.1. On the other hand, the CRF framework has to be implemented for the 
irregular point cloud. The structuring of the graph as well as the choice of parameters and functions 
for the training and inference are described in Section 2.2.  

2.1. Feature extraction 

For each laser pulse, information about 3D coordinates and intensity are available for the          
backscattered signal. We do not use full waveform laser scanner data and, thus, do not have         
additional signal waveform information. Nevertheless, several features can be calculated from the 
point cloud. We test different features based on the intensity, the average height and the curvatures 
and identify a representative set for our classification task by a correlation-based approach out of 
the WEKA data mining software [3]. Thus, eight features are indicated to be essential for the      
distinction of the classes water, mudflat, and mussel bed. The intensity and the point density have 
been found to be well-suited for separating water from dry mud areas in the Wadden Sea [4]. On 
water surfaces, the intensity may be low due to a lower reflectance (Figure 2). Because of specular 
reflection (dependent on the incidence angle), the number of laser pulses without any received     
return can be significantly higher in water surfaces, which leads to a decreasing point density.  

 

  
 

Figure 2: Intensity data of the backscattered signals which may be low (black) on water areas and high (white)  
on land surfaces.  

 
For mussel bed detection, different features are derived from the local geometry of point        

distribution. Therefore, we use a volumetric approach and define a vertical cylinder with a          
predefined radius  to find adjacent points. The radii for the neighbourhood definition are set to 

 and  depending on the features. The difference of a point and the lowest point 
elevation value within the cylinder, depicted as distance to ground, characterises the greater        
elevation of this class. Further height-based features are the average height of all adjacent points in 
a neighbourhood as well as the difference of average heights for various radii. Moreover, we       
calculate the maximum and minimum of the normal curvature at a point on this plane, denoted as 
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principal curvatures and. The product of the principal curvatures is called the Gaussian         

curvature, the mean curvature  can be determined by the mean arithmetic curvature. 
The deviation of points from a plane is derived from the three eigenvalues ( ) within 
the cylindrical neighbourhood based on the covariance matrix of the 3D coordinates set up for each 
point. The lowest eigenvalue  serves as classification feature. All the eight features are introduced 
in our classification approach. 

2.2. Classification of LiDAR data using conditional random fields 

CRFs are a flexible tool for classification tasks and belong to the group of graphical models. For 
image labelling, they were introduced in [5]. In comparison to image data, labelling of point clouds 
is even more challenging due to the irregular distribution of points in 3D space. Several approaches 
for the classification of point clouds based on CRFs have been developed in the past. For instance, 
[6] propose a method for the classification of terrestrial laser scanning data. The potential of CRFs 
for airborne laser scanning data was shown in [7] (segment-based) and in [8] (point-wise). 

In the CRF framework, data are converted to a graphical model which considers the relations       
between data through a network of nodes and edges. The nodes are represented by the dataset, in 
our case, the points of the LiDAR point cloud. In order to preserve small objects, especially small 
mussel bed areas, we classify point-based without a preceding segmentation. Each node and point, 
respectively, is linked to its adjacent nodes by an edge. In contrast to common classification        
approaches, data points are not modelled to be conditionally independent. Thus, a class label  to 
each node i in the graph is assigned based on its feature vector  as well as on those obtained for 
all points in the defined neighbourhood . The posterior distribution  of the class  given 
the observed data  is derived in a discriminative model. Following [3] the posterior distribution 

 can be written as: 

 
                                                                                                  
where the partition function Z(x) acts as normalization constant. It is needed for the             

transformation of potentials to probabilities. The energy term can be expressed as the sum of       

association potentials   and interaction potentials  over the neighbourhood N 
and the data set S. The association potential  indicates how likely a node i belongs to a class C 
given the observations x (Equation 2). The interaction potential  is a function of all data x and 
measures how the classes of neighbouring points interact (Equation 3). Closely related to [3] we 
consider a log-linear formulation to model both potentials 

 
,                                                               (2) 

 

                  (3) 
 
Vector  contains the weights of node features  of each node i. In our case we use the 

features described in Section 2.2 which are normalised to unit one to get a robust inference. The 
feature vector  is calculated for each point by the absolute difference of feature vectors for 

each point of neighbouring nodes  and  The weight vector is learnt in a training process  
depending on the combination of classes  and . 
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The best discrimination of the classes is obtained iteratively in an optimization framework by 
minimising a cost function which depends on both of the weight factors. The optimal label         
configuration is determined in an inference step. Thereby,  is maximized for given 
parameters based on an iterative message passing algorithm. For the training and inference,  
we apply the optimization method Limited Memory Broyden-Fletcher-Goldfarb-Shanno [9] and the 
Loopy Belief Propagation [10] as message passing algorithm, as implemented in M. Schmidt’s  
Matlab Toolbox [11]. The result of training and inference is a probability value per class for each 
data point. The optimal label configuration based on maximising 

           
         

 is provided via maximum 
a posterior (MAP) probability estimate.  

3. Results 

We evaluate our classification approach with LiDAR data from the German Wadden Sea. The test 
site covers an area of about 0.3 km x 1.1 km in the south of the islands Spiekeroog and Langeoog 
(Figure 1). It contains a big water-filled tideway, some smaller tideways as well as mussel bed. Data 
were acquired at low tide during a Wadden Sea monitoring using a RIEGL LMS-Q560 LiDAR   
system. Information about 3D coordinates and intensity are available for the backscattered signal of 
each laser pulse. We compare the classification results to a reference that was generated by          
delineating water and mussel bed considering ground truth data and an orthoimage. For the         
necessary training step, we divided test data set into two parts. Thereby, the parameters are learnt on 
one half of a test site and tested on the other one.  

Tables 1 and 2 show the classification results for completeness and correctness of the three 
classes. Since we are interested in the investigation of influence of contextual knowledge for the 
classification, we modify the value of the neighbourhood N. For mudflat areas, we achieve good 
results with more than 90% completeness and more than 98% correctness in both tests. The rates for 
correctness of water areas detection are not on the same level (between 66% and 71%). In particular 
the discrimination of water and mudflat leads to a certain rate of misclassification. Figure 3 shows a 
part of the test site where water filled tideway, is mostly correctly classified. However, the         
classification of water areas often fails in the transition zone between water and mudflat where    
elevation differences are low. The results of different neighbourhood demonstrate that the increased 
neighbourhood for the CRF approach helps increasing the results due to a strong smoothing. This 
effect is caused by the interaction potential, which is basically a smoothing term. For the mussel bed 
detection a low correctness and, in particular, completeness rate is obtained. The main reasons are 
that only few mussel bed regions are presented in the test site in comparison to the mudflat areas. 

 

Table 1. Results for classification with neighbourhood N = 2. 

 Mudflat Water Mussel bed 

Completeness 98.5 % 51.6 % 46.8 % 

Correctness 97.7 % 70.7 % 42.6% 

 

Table 2. Results for classification with neighbourhood N = 4. 

 Mudflat Water Mussel bed 

Completeness 90.8 % 82.4 % 56.6 % 

Correctness 98.8 % 66.3 % 8.5 % 
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Figure 3: Labelled point cloud with water areas (blue) and mudflat areas (yellow). 

 

       
Figure 4: The Colour Infrared Orthoimage (left) of the test site clearly shows the mussel bed (red).  

In the labelled point cloud (right) most of them are detected (mussel bed: red, mudflat: yellow). 

 
Therefore, the numbers of samples of available data for training and testing is limited. Moreover, 

mussel bed and mudflat are characterised by similar features in some parts of the test site. Most of 
the significant features for the mussel bed detection rely on the relative elevation differences as well 
as on the curvatures of the surface. These features occur very similar near to tideways and lead to 
misclassification in these parts (Figure 4). Nonetheless, the incorporation of context leads to       
partially high detection rates which can be seen in Figure 4, where the labelled point cloud is     
compared to the clearly recognisable mussel bed in the orthoimage.    

4. Conclusions and Outlook 

In this paper, a classification approach for remote sensing data in Wadden Sea areas has been      
described. In regard to a habitat mapping we use LiDAR data, SAR data, and optical images. The 
focus of this paper was on the classification method of LiDAR data. Therefore, we used a           
context-based approach in a CRF framework. We presented suitable classification features for a 
habitat mapping in Wadden Sea areas. As result of the supervised classification process, each point 
of the 3D point cloud is assigned to one of the three object classes water, mudflat, and mussel bed. 
A test on data of the German Wadden Sea showed that the detection of water and mussel bed in   
LiDAR data is a challenging task. For water areas, the best results were obtained for the contextual 
classification by increasing the neighbourhood, which leads to a stronger smoothing effect.            
In regard to the mussel bed detection, similar feature values, in particular based on relative height 
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differences and curvatures, leads to some misclassification of mudflat and mussel bed on the border 
of tideways.  

In the future, we intend to integrate full waveform laser scanning data as well as some texture 
features in the classification process. Moreover, we plan to combine these data with classification 
results of optical images (Figure 5) and SAR images (Figure 6) to obtain a reliable concept for the 
marine monitoring. Visual interpretation of TerraSAR-X data in combination with profound 
ground-truth knowledge gained from extensive fieldworks or monitoring programmes allows the 
reliable identification of different surface structures like f. e. mussel bed, mudflats or water covered 
surfaces (Figure 6).   
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Figure 5: Classified RapidEye image. 
 
 
 

 
 
Figure 6: Detail from TerraSAR-X High Resolution Spotlight (©DLR, 2011) showing typical mussel bed structure 

verified by digital mapping from orthoimages (red contours) and ground-truth. The direct surroundings of the mussel 
bed are predominantly covered with water roughened by strong wind of 6 Beaufort. The image shows “Swinnplate” 

south of the island of Spiekeroog on 26.12.2011. 
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