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ABSTRACT: The planning of agricultural policy at European and national levels makes use of crop statis-
tics derived from remote sensing data. The main aim of using these data is to obtain regular and reliable crop
statistics during the growing season via a monthly crop status bulletin. Optical data are being used on an op-
erational basis to provide agricultural statistics as early as possible in the year because, with the use of satel-
lite imagery, large areas can be covered under the same atmospheric conditions at a very limited cost. But
cloud cover poses the greatest restriction on the acquisition of data that may be required at different intervals.
This limitation has been somewhat alleviated by the use of Synthetic Aperture Radars (SARs) which are es-
sentially all-weather systems. A number of works have already reported the use of SAR intensity images for
land use classification. Another SAR-based technique, called SAR interferometry, uses two single look com-
plex (or SLC) SAR images which contain both amplitude and phase information. Coherence images can be
produced from two SLC images, often as part of the interferogram generation process.

This study was carried to study the impact of the use of texture features derived from coherence and intensity
images on land use classification accuracy, in combination with coherence and intensity images. For this
study, five SLC images covering a period from 02/05/1996 to 20/09/1996 were selected. The classification
problem involved the identification of seven land cover types; namely, wheat, potato, sugar beet, onion, peas,
barley and carrots that cover the bulk of the area of interest. Interferometric processing was carried out using
all five SLC images. Five intensity and three coherence images were obtained and it was found that only the
tandem pair (02/05/1996 and 03/05/1996) provided good quality coherence images. Texture features based on
the GLCM, Markov random fields, local statistics, and fractals were derived from all intensity and the coher-
ence images for further use in image classification. As the number of input features become large for classifi-
cation, a feature selection based on a statistical measure called Hotelling’s T?was carried out to select the
three best features for each intensity and coherence image. Five different data sets (1) five median filtered in-
tensity images, (2) median filtered coherence and five intensity images, (3) median filtered coherence and
three texture features of coherence images and five intensity images, (4) data set (1) with texture features and,
(5) data set (2) with texture features were used in this study. Three different classifiers (ML, neural and deci-
sion tree) were used.

Results suggests that the classification based on data set (2) is about 9% more accurate than data set (1) with
all the classification system used thus, suggesting that the incorporation of coherence information can be very
useful for land cover classification, in combination with intensity images. By using the texture features of all
the images (data set (5)) an overall classification accuracy of more than 82% was achieved, which suggests
that the use of texture features derived from InSAR data can results in acceptable levels of accuracy being at-
tained for land cover classification. This study also suggests that a decision tree classifier can be used very ef-
fectively for land cover classification studies involving radar data.

1 INTRODUCTION crowave images of a given area on the ground from
two different positions. Microwave images have two

Interferometric Synthetic Aperture Radar (InSAR) s~ components. The first is the intensity of the back-

an airborne or spaceborne system that acquires mi-  Scatter. Intensity images are widely used in remote
sensing. Often, several intensity images are averaged
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to produce a multi-look intensity image, which has
less speckle noise than a single look image, though
resolution is degraded. The second component of a
microwave image is the phase of the signal. Com-
parison of phase differences on a pixel-by pixel ba-
sis for two microwave images taken from two dif-
ferent points provides information about the surface
elevation of the pixel. In fact, phase measures the al-
titude of the platform carrying the SAR instrument,
and surface elevation is computed from a combina-
tion of orbital parameters that gives the position of
the spacecraft and phase information recorded by
SAR.

Synthetic Aperture Radar (SAR) has a number of
advantages for land observations over visi-
ble/infrared systems due to its all-weather, day and
night image acquisition capabilities. A SAR based
technique called interferometry has attracted interest
due to its use in the generation of DEMs, detection
of terrain displacement, monitoring of ice sheet mo-
tion and measuring ocean surface currents, etc. SAR
interferometry uses a pair of complex SAR images
(called single look complex, or SLC images) of the
same area taken from two different viewpoints. The
image thus obtained contains information on the
phase and amplitude of the backscatter and can be
used to generate interferograms. The phase compo-
nent of the interferogram (responsible for the inter-
ferometric fringes) is the phase difference between
two SAR images.

Coherence, which gives the degree of correlation
of the phase component of the two images, and
which is used to characterise the quality of inter-
ferograms, can be calculated on a pixel by pixel ba-
sis to produce a coherence image as a by-product of
interferometry. These images are generally used for
verifying the phase coherence of an interferogram.
Over the past few years, a number of works reported
in the literature show the potential uses of coherence
images in mapping change detection, forest map-
ping, geological and ice mapping and land use clas-
sification.

This paper begins with a brief review of the op-
eration of an InSAR system and the calculation of
the coherence between successive SAR images is
described. Various textures measures, feature selec-
tion as well as the classifiers used in this study are
discussed in brief and finally the results of this study
are discussed.

2 INTERFEROMETRIC SYNTHETIC
APERTURE RADAR

Interferometric Synthetic Aperture Radar (InSAR)
mapping was introduced by Graham (1974). Radar
interferometry is a technique for extracting three-
dimensional information about the earth’s surface by
using the relative phase difference of two coherent
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synthetic aperture radar images obtained by two re-
ceivers separated by a cross-track distance (termed
the baseline) to derive an estimate of the earth sur-
face height. The horizontal resolution (range and
azimuth resolution) of the system is dictated by the
SAR bandwidth (frequency range contained in a sig-
nal) and antenna length. These parameters can be se-
lected so as to satisfy the topographic resolution re-
quirements. The vertical accuracy of the system is
ultimately limited by the wavelength used by the
SAR, which, for microwaves, is on the centimetric
scale. In addition, InSAR has the capability to pro-
vide all-weather performance, in contrast to optical
Sensors.

The phase difference ¢ between the signals re-
ceived from the same surface element at the two an-
tenna positions is

@ =4m(r2 - r1)/A (1)

Where A is the SAR wavelength (which must be
the same for the two observations), H is the altitude
of platform, rl and r2 are the distances between the
radar antenna and the scatterers for platform posi-
tions. The parameter @ is the local incidence angle.
The height of the point N can be determined from

Z =H-rlcos® 2)

There are three main ways to acquire SAR inter-
ferometric data. These are along-track, across-track
and repeat-track (multi-pass) interferometery. In
both across-track and along-track interferometry two
SAR antenna systems are mounted on a single plat-
form, which is generally an aircraft because it has
not yet been possible to mount two SAR systems on
a satellites. Repeat-pass interferometry requires only
one antenna mounted on a satellite. The data used in
this study (table 1) were acquired by the ERS-1 and
ERS-2 satellites, which carry identical SAR instru-
ments.

Table 1. SLC (single look complex) used in the study

Sensor | date

ERS-1 02/05/1996
ERS-2 03/05/1996
ERS-2 07/06/1996
ERS-2 16/08/1996
ERS-2 20/09/1996

3 COHERENCE

In SAR interferometery, coherence is defined as a
measure of the degree of resemblance of radar
phases of two SAR images acquired from two dif-
ferent positions. The degree of correlation that exists
between two SAR images is called the complex de-
gree of coherence. The value of this coefficient var-
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ies between zero and one, where a zero value means
no interference, which implies that there will be no
fringes on an interferogram derived from the area.

3.1 Coherence Magnitude Estimation

The complex coherence of two zero-mean complex
signals g,and g, for stationary random processes is
defined as (Born and Wolf, 1980):

ye Elg.g. ] 3)

E gl‘z gz‘z

where g; is the complex conjugate value of sig-
nal g, and E[ ] denotes the expectation value. The
magnitude of v ( M ) is called the degree of coherence
and the phase of y is called interferometric phase.
Under the assumption that the processes involved in
the above equation are ergodic in mean' ensemble
average is found by coherently averaging the com-
plex values of N single look pixels. The coherence
is then defined as:
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An accurate estimate of coherence cannot be deter-
mined directly from this equation when we have a
topographically-induced phase component in the
data, which is the case for INSAR images. So a re-
vised coherence estimate is given by:
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Where e is a phase factor for the local imaging
geometry.

In this study, three coherence images at one,
thirty five and seventy day interval were generated.
Due to the large base line length (>1000 m) and the
time interval, the phase coherence obtained at 35
days and 70 days was poor. Hence, in the remainder
of the study, only the 1-day coherence image and
five intensity images produced during the interfer-
ometric processing of the single look complex im-
ages were used for land use classification. A median

! There are two way to calculate the mean of a random variable: 1.Time aver-
age: by integrating a particular member function over all time or 2. Ensemble
average: average together the values of all member functions evaluated at some
particular point in time. A random variable is ergodic if and only if (1) the time
average of all member functions are equal, (2) the ensemble average is constant
in time, and (3) the time average and the ensemble average are numerically
equal. Thus, for ergodic random variables, time average and ensemble average
are interchangeable

filter with a window size of 5x5 was used for
speckle reduction in all intensity and coherence im-
ages.

4 CLASSIFICATION

Three type of classifiers are used. These are the
maximum-likelihood, multi-layer backpropagation
neural network and the decision tree classifier. A
number of studies have reported the use of neural
classifier in remote sensing, but very few works
have so far reported the use of decision tree methods
in land use classification, especially its performance
compared to neural network classifiers. The use of
decision tree classifier in remote sensing is discussed
by Swain et al. (1977), Friedl et al. (1996), Defries
et al. (1998), Hansen et al. (1996, 2000), and
Muchoney et al. (2000). This section provides a
brief summary of the characteristics of the three
classifiers used in this study.

4.1 Maximum-Likelihood Classifier

The Maximum likelihood Classifier (MLC) is based
on the assumption that the classes are normally dis-
tributed in attribute space. MLC is a pixel-based
method and can be defined as follows: a pixel with
an associated observed feature vector X is assigned
to class ¢; or

Xe ¢, if g,(X)> g, (X) forall j=k, j,

For multivariate Gaussian distributions g, (X) is
given by:

g, (X)=In(p(c,))- %142\-;()(—%)’2*()(—%) (6)

where M, and ¥, are the mean vector and covari-
ance matrix, and g, is the discriminating function.

Implementation of the MLC involves the estima-
tion of class mean vectors and covariance matrix us-
ing training patterns chosen from the images and
based on the ground reference image of the study
area.

4.2  Artificial Neural Network Classifier

For this study, a feed-forward artificial neural net-
work (ANN) is used. This is the most widely used
neural network models, and its design consists of
one input layer, at least one hidden layer, and one
output layer. Each layer is made up of nonlinear
processing units called neurones or units, and the
connections between neurons in successive layers
carry associated weights. Connections are directed
and allowed only in the forward direction, e.g. from
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input to hidden, or from hidden layer to a subsequent
hidden or output layer. Non-linear processing is per-
formed by applying an activation function to the
summed inputs to a unit. Back-propagation is a gra-
dient-descent algorithm minimising the error be-
tween the output of the teaching input/output pairs
and the actual network outputs. Therefore, a set of
input/output pairs is repeatedly presented and the er-
ror is propagated from the output back to the input
layer. The weights on the path back through the
network are updated according to an update rule and
a learning rate. ANNSs are not specified by the char-
acteristics of their processing units and the training
or learning rule only. The network topology, i.e. the
number of hidden layers, the number of units, and
their interconnections, also has an influence on clas-
sifier performance. In this study we use the network
architecture and number of patterns used for training
as suggested by Kavzoglu (2001).

4.3 Decision Tree Classifier

In the usual approach to the classification, a com-
mon set of features is used jointly in a single deci-
sion step. A different approach is to use a multistage
or sequential hierarchical decision scheme. The ba-
sic idea involved in any multistage approach is to
break up a complex decision into a union of several
simpler decisions, hoping that the final solution ob-
tained this way would resemble the intended or de-
sired solution. Hierarchical classifiers are a special
type of multistage classifier that allows rejection of
class labels at intermediate stages.

Classification trees offer an effective implementa-
tion of such hierarchical classifiers. Indeed, classifi-
cation trees have become increasingly important

Figure 1. A classification tree for a five dimensional feature
space and three classes. The X;'s are the feature values, the
77; s are the thresholds, and y is the class label.

due to their conceptual simplicity and their computa-
tional efficiency. A decision tree classifier has a
simple form which can be compactly stored and that
efficiently classifies new data. A decision tree classi-
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fier perform automatic feature selection and com-
plexity reduction, while the tree structure gives eas-
ily understood and interpreted information regarding
the predictive or generalisation ability of the data.

The decision tree is constructed by recursively
partitioning a data set into purer, more homogenous,
subsets on the basis of a set of tests applied to one or
more attribute values at each branch or node in the
tree. This procedure involves three steps: splitting
nodes, determining which nodes are terminal nodes,
and assigning class label to terminal nodes. The as-
signment of class labels to terminal nodes is straight-
forward: labels are assigned based on a majority or
a weighted vote when it is assumed that certain
classes are more likely than others.

A tree is composed of a root node (containing all
the data), a set of internal nodes (splits), and a set of
terminal nodes (leaves). Each node in a decision tree
has only one parent node and two or more descen-
dent node (figure 1). An observation vector is classi-
fied by moving down the tree and sequentially sub-
dividing it according to the decision framework
defined by the tree until a leaf is reached.

In this study, See5.0 software (a univariate deci-
sion tree algorithm using the information gain ratio
as an attribute selection measure) is used. The most
important element of a decision tree estimation algo-
rithm is the method used to estimate splits at each
internal node of the tree and to reduce the problem
of overfitting the training data, thus reducing the
generalisation capability of the classifier. To reduce
this problem, the original tree is pruned to reduce the
classification errors when the data outside of the
training set are to be classified. To address the prob-
lem of overfitting of the training data. See5.0 uses
error-based pruning which prunes the tree using a
bottom-up approach, and by using the training data
itself.

5 FEATURE EXTRACTION AND SELECTION

A number of methods have been developed to deal
with spectral and spatial information, in order to
achieve improved classification performance. In
comparison with tonal measures, the definition of
texture features appears more difficult. The main
difficulty faced by the researcher is to define a set of
meaningful features to characterisetexture proper-
ties.

Based on the exture descriptors available in the
literature, four approaches are used in this study.
The first approach uses the Grey-Level Co-
occurrence Matrix (GLCM) (Haralick et al., 1973).
The second approach uses the features derived from
local statistics. The third approach is based on the
fractal geometry of the image and the fourth ap-
proach is based on the Multiplicative Autoregressive
Random (MAR) field model. Hotelling’s T* statis-
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tics is used to find the best four features out of the
ten features of each intensity and coherence image,
including the intensity and coherence image values.

5.1 Texture features based on GLCM

In this study, five indices are used as texture meas-
ures obtained from both coherence and intensity im-
ages. In what follows, g(i, j) denotes the (i, j)th entry
in a normalised GLCM, and N, denotes number of
distinct grey levels in the quantised image.

1. Angular Second Moment (ASM):
ASM = 33 [g,j)f )
]

2. Contrast (Con):

o2

Ng-1  (NgN
Con= Y nZ{Z
=1

n=0 J

1g(i,j)} ®)

3. Correlation (Cor):

¥ i §)-pasty

Cor= ——— )
0,0,
4. Inverse Different Moment (IDM):
1
IDM = Zzﬁg(i,j) (10)
ij l+(1—])
5. Entropy (Ent):

Ent = - ¥ ¥ g(i, j)log(g(i, j)) (11)

5.2 Feature based on local statistics

Only one feature, “variance”, is calculated based on
local statistics. It can be calculated from the fol-
lowing formula using a moving window:

Z(DNij —H)z

— 12)

Variance =
where DNj; represents the DN value of pixel at
position (i, j), n is the number of pixels in a moving
window and # represents the mean of the moving
window, which is calculated from:

_XDN;

n

5.3 Textures based on fractal dimension

The concept of fractal dimension can be useful in the
measurement, analysis, and classification of shape
and texture. A number of approaches exists in litera-
ture to estimate the fractal dimension (D). In this
study the method based on box-counting proposed
by Sarkar and Chaudhri (1994) is used.

This method is described as follows: consider that
the image of size MxM pixels has been divided into
grids of size sxs, where M/2 2's > | and L is an inte-
ger. Consider the image as a 3D surface with (x, y)
denoting a 2-D position and the third co-ordinate (z)
being grey level. The (x, y) space is divided into
grids of size sxs. Thus for each grid there is a col-
umn of boxes of size sxsxs , where s can be a mul-
tiple of the side length of a pixel in (x, y) and s can
be a multiple of the grey level in z-direction. If the
total number of grey level is G then s’ is calculated

e

Assign the numbers 1, 2, ...., nin turn to each box in
the column from bottom to the top. Let the minimum
and maximum grey level of the image on the (i, j)th
grid fall in boxes number p and k, respectively. Then
the number of boxes needed to cover the surface on
the (i, j)th grid is

Ilr(i,j): =p_k+ 1
where
r=s/M
After taking contributions from all grids, the total
number of boxes needed to cover the whole image
with box size sxsxs' is

N, =xn,(i.j) (14)
ij

N, is counted for different values of s. The fractal
dimension D is therefore estimated from the least
square linear fit of log (N, ) against log (1/r). This
method is computationally efficient and gives a good
approximation to the boxes intersecting the image
intensity surface. Counting N, in this manner gives
a better approximation to the boxes intersecting the
image intensity surface, when there is sharp grey
level variation in neighbouring pixels in the images.

5.4 Estimation of texture parameters in the MAR
model

Frankot and Chellapa (1987) proposed the gaussian
autoregressive random field models for the loga-
rithm of radar image intensity in two-dimensions,
which they called the lognormal multiplicative auto-
regressive (MAR) model. Initially the MAR concept
was originally used to model image data, and the pa-
rameters of the model have been found to be highly
correlated with the spatial distribution of the data.
For this reason, they can be used as a texture de-
scriptors for image classification (Solberg and jain.,
1997). Three parameters of the MAR model are gen-
erally estimated and used for texture descriptors.
These are the parameters 0, variance o,’, and the
mean value 3§, of the stationary random process q
respectively. The parameter estimation method em-
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ployed is least square estimation as suggested by
Kashyap and Chellappa (1983) while the neighbor-
hood defined by N = {(0,-1), (-1,-1), (-1,0)}and 8,is
an exponent weighting factor for neighborhood r,
used to compute these parameters.

Let an image p(s), se Q, be represented by the
following white-noise-driven multiplicative system:

pls)= i [p(s+ 1) - v(s) (15)

Where Q= {0, 1, . ... M-1}x{0, 1, . . .., M-
1}. N is the neighbourhood set defining model sup-
port, v(s) is a lognormal white-noise process referred
to as the driving process, and s=(m, n), a 2-D index
to an image. The random field p(s) is said to obey a
lognormal MAR model if q(s) = In p(s) and w(s) =
In v(s). Then equation 15 becomes:

qls)= 6, “qls +1)+w(s) (16)

For MAR models, the least squares estimates
based on p(s) are as:

Covariance:

5 1 T 2
where

-1
0= z( )4ZT( ):l { Z( ()_ :|

o] et

and mean
mq=$;ﬂq(s) (18)

where

z(s): q(s+r)—mq, reN

Due to the variations in texture, different images
will generally show different value of means, noise
covariance, and parameter 6, and so it possible to
use these three parameters to describe the texture of
image being used for classification.

. . - R
5.5 Feature selection using Hotelling’s T~ statistic

Several multivariate statistical test techniques can be
used to determine the degree of discrimination be-
tween the classes in a given dataset, by using the
means and co-variance matrices of the classes. Ho-
telling’s 7 statistic is a well known technique that
can be used in a descriptive statistical test to esti-
mate the discriminating power of a feature or rela-
tive importance of a feature.

Hotelling’s T statistic is used to test the null hy-
pothesis that the (population) multivariate means of
the two groups under study do not differ signifi-
cantly. It provides a multivariate generalisation of
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the Student’s t test and is related to the problem of
how best to discriminate between two groups. T~ is
calculated from:
T? = ﬂ
n+n,

D’ :(m1 _mlyZ"(ml —mz)

where D’ is the measure known as Mahalanobis’
D-squared, which measures the overall similarity be-
tween the two groups. Y- is the inverse matrix of
the pooled co-variance matrix X, and m, and m, are
the mean vectors for the groups, which contain n,
and n, individuals, respectively.

The value of Hotelling’s T increases as inter-
class separation increases. The statistical signifi-
cance of T” can be evaluated using a transformation
to the F distribution. It should be noted that the
number of observations need not be the same for the
two samples, but the number of features must be the
same.

Hotelling’s T is used to identify only three best
texture features for each image (five intensity im-
ages and one coherence image) to be used for land
cover classification. For intensity and coherence im-
ages, nine texture features including five grey-level
co-occurance features two features from the MAR
model (markov mean and covariance), one feature
calculated from fractal geometry and one feature
from first order statistics (variance) are used for fea-
ture selection. With intensity images the four best
features selected and used for further classification
are fractal dimension, the intensity image itself, con-
trast from GLCM and variance from first order sta-
tistics. For the coherence image, the four features se-
lected are coherence, markov mean, correlation and
entropy from GLCM (Table 2).

D’ (19)

6 CLASSIFICATION RESULTS AND
DISCUSSION

6.1 Datasets used and Results

For this study the different data sets used for classi-
fication are:

1. All five median filtered intensity images.

2. combination of filtered coherence image with all
five intensity images.

3. A combination of coherence image and its three
best texture features with all five median-filtered in-
tensity images.

4. All five intensity images in combination with the
texture features of all these five intensity images.

5. The coherence image, all five intensity images,
and the three best texture features for each of the co-
herence and intensity images.
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Table 2.Various features obtained by applying Hotelling’s i
feature selection method and used in final classification proc-
ess.

Image Features selected Hotelling’s T~
value
Coherence | Correlation and entropy | 709.15
image from GLCM and MAR
mean
Intensity Variance from local 476.18
images statistics, contrast from
GLCM and fractal
dimension

Three different classifiers (section 4) were used.
The user-defined parameters for the neural network
are set according to the recommendations made by
Kavzuglu (2001). Random sampling was used to
collect the pixels with all data sets. The sampled
pixels were divided into two parts, one of which was
used for training and one for testing the classifiers,
so as to remove the bias in using the same set of pix-
els during training and testing. Overall classification
accuracy (in %) and Kappa coefficients are shown in
table 3, using maximum likelihood, neural and deci-
sion tree classifiers (figure 2 and figure 3 gives clas-
sified images with data set 2 and 5 respectively).

Table 3.Classification accuracies and Kappa values (in bracket)
with all five different datasets with three different classifiers

Data sets | Overall classification accuracy (%) and Kappa
used value
Classifiers used
ML NN DT

1 59.2(0.52) 60.8 (0.57) 69.9 (0.65)
2 68.7 (0.64) 69.9 (0.66) 77.8 (0.74)
3 70.6 (0.66) 73.7(0.71) 77.9 (0.74)
4 68.7 (0.63) 73.1(0.70) 78.6 (0.75)
5 77.1(0.73) 82.9(0.81) 82.7 (0.80)

6.2 Discussion

Comparison of the results shown in table 3 (data sets
1 and 2) suggests that the inclusion of coherence in-
formation with the intensity images results in an im-
provement in overall classification accuracy for all
of the three classifiers used. The increase in accu-
racy with the maximum likelihood classifier is from
59.2% to 68.7% (Kappa value 0.524 to 0.635), the
neural classifier shows a rise from 60.8% to 69.9%
(Kappa value 0.572 to 0.664), while results from the
decision tree classifier vary from 69.9% to 77.8%
(Kappa value 0.65 to 0.741). The result shows that
there is an increase of about 8-9% in accuracy when
coherence information is added, irrespective of the
classifier used. Evaluation of results presented so far
in this study suggests that the decision tree classifier
performs better than either the maximum likelihood
or the neural classifiers. It gives a significant in-

crease in classification accuracy of about 10% as
compared to both of the other classification systems
with data sets 1 and 2.

The study further suggests that the inclusion of
texture measures helps to improve classification ac-
curacy. For this study, the three best features are se-
lected for each intensity and coherence image. Ini-
tially, data set 3, which includes texture features
obtained from the coherence image, was used for
classification. The results suggests that an improve-
ment of 4% in classification accuracy is achieved by
using the neural network classifier as compared to
data set 2, while use of the maximum likelihood and
the decision tree classifiers suggests no major im-
provement in classification accuracy.

When all five intensity images with their associ-
ated texture features (data set 5) are used, a signifi-
cant improvement in classification accuracy is
shown as compared to the data set 1. Classification
accuracy increases by an amount ranging from 8.7%
to 12.3% depending on the classifier used, thus sug-
gesting the importance of texture features with In-
SAR intensity images in land use classification. Fur-
ther studies were carried out after adding the
coherence and its texture features with dataset 5
(data set 6). An increase of between 4 and 9% in
classification accuracy as compared to data set 6
suggests that the coherence image provides dis-
criminating information about the land surface and
can be used effectively for land use classification in
combination with intensity images obtained from in-
terferometric SAR data. The highest accuracy ob-
tained by this combination (data set 6) is 82.9% with
a neural classifier, which is slightly higher than the
decision tree classifier (82.7%).

7 CONCLUSIONS

A number of combinations of data sets derived from
interferometric SAR intensity and coherence images
have been evaluated for crop discrimination. The re-
sults obtained from five different datasets (table 3)
shows that coherence image in combination with the
intensity images provides additional discriminative
power in land use classification studies. The highest
accuracy obtained is about 82.9% while using 24
features, justifying the importance of the texture fea-
tures, as suggested by earlier work by Dutra and
Huber (1999) in land cover classification using inter-
ferometric SAR data. However, in practice, one of-
ten encounters the so-called dimensionality problem,
i.e., with a fixed and relatively small sample size, the
classification accuracy may actually decrease when
the number of features is increased (Hughes, 1968).
This means that the use of a larger number of fea-
tures requires a corresponding increase in the num-
ber of training samples, so that the results obtained
are reliable.
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It has also been found that decision tree classifier
achieves better results than the statistical and neural
classifiers in almost all cases, except with dataset 5,
where its performance is slightly inferior to that of
the neural classifier. The same number of training
data were used for the three classifiers for dataset 5,
thus indicating the limitations of univariate decision
tree with limited training data size as the number of
features increases.
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