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ABSTRACT: This paper presents a protocol for rigorous accuracy assessment of land-cover and land-use 
changes between two dates (1977-1993) through the overlay of two independent classifications (post-
classification method). Although postclasification overlay is a usual method, there are only a few works con-
sidering those factors that can distort results; these factors are thematic accuracy, spatial misregistration, 
fragmentation of the landscape, pixel size and grid origin. The methodology is applied over an area located at
the NE of the Iberian Peninsula. Results clearly show that without correcting these factors the thematic accu-
racy of the change map would be only 43.9%, although the thematic accuracy of the maps to be overlaid is 
quite high (about 90%). 

1 INTRODUCTION

Satellite remote sensing, because of its temporal 
resolution, provides an excellent historical frame-
work for estimating the spatial extent of land cover 
and land use (LCLU) changes. Using satellite im-
ages, different types of LCLU changes have been 
monitored, for instance in urban development (Dai 
and Khorram 1998), in agricultural crop rotation 
(Congalton et al. 1998), in forest fire mapping (Sal-
vador et al. 2000) or in deforestation assessment 
(Mertens and Lambin 1997).  

There are two basic approaches for LCLU change 
detection (Singh 1989):  
1. Comparative analysis of independently produced 

classifications from different dates (post-
classification comparison: map-to-map compari-
son).

2. Simultaneous analysis of multitemporal data 
(multidate classification and others: image-to-
image comparison).  

Both approaches have advantages and disadvan-
tages, but the most common method is the post-
classification comparison (Congalton and Macleod, 
1994). Moreover, this approach allows using legends 
more detailed than with the second approach; there-
fore, it was the chosen approach. 

The main sources of uncertainty of this method 
are:
1. Misregistration of the polygon boundaries (loca-

tional inaccuracy) in the different classifications 

and, therefore, the presence of border pixels with 
false positive or negative changes.

2. Problems derived from classification errors: a 
false positive change may be recorded when no 
change has taken place because a polygon in one 
or both of the two maps is misclassified, or false 
negative changes, when no change is identified 
but a change has taken place.   

3. Furthermore, this approach requires very good 
accuracy in both classifications because the ac-
curacy of the change map is the product of the 
accuracies of the individual classifications 
(Singh 1989, Lambin and Strahler 1994).  

4. Moreover, if the images used for each classifica-
tion are from different seasons of the year, the 
comparison can be more difficult, especially for 
some legend items due to vegetation phenology.  

Although it can be thought that the result of mul-
tiplying the accuracies of each individual classifica-
tion could suffice, this would be only true if no 
planimetric error existed in either of the two layers. 
Indeed, all misregistration problems will decrease 
the accuracy because they introduce false positive or 
negative changes (Townshend et al. 1998).

When remotely sensed data come from different 
sensors, for instance MSS with SPOT in Jensen et
al. (1995), or MSS with TM in Lodhi et al. (1998), 
some extra problems appear for both approaches:  
1. Different pixel size affects the classification be-

cause some elements are not detected in the 
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coarser resolution images which do appear in the 
finer resolution images. 

2. Overlaying for LCLU change analysis is compli-
cated by different pixel size and/or grid origin, 
producing an extra problem to the misregistra-
tion caused by the different geometric correc-
tions of the different images. 

3. The number of bands and their wavelengths 
(spectral information) is different (Fung 1992), 
as well as the sensitivity of the sensors, this fac-
tor being more critical in the second approach.  

Although working with different sensors is not 
ideal, it is often unavoidable. For example, in time 
series analysis, one of the sensors may not have ex-
isted at the earlier dates, or it stopped collecting data 
for technical or political reasons; in other cases, we 
simply do not have any other data available. 

The general objective of our research was to de-
tect and compare LCLU changes between 1977 and 
1993 from Landsat image data of a Mediterranean 
agricultural plain. Unfortunately, comparison is usu-
ally made by a simple crossing of the results regard-
less of the implications of the factors discussed 
above, crucial to understanding and quantifying their 
effects and, especially, for properly interpreting the 
results of the LCLU comparison. 

Thus, the specific objective of this paper is to dis-
cuss the implications of the usage of different sen-
sors in the comparison of classified images and to 
propose a protocol for this type of situation. 

A secondary objective is to discuss which classi-
fier is more suitable, given that the accuracy of each 
classification is very important in LCLU change de-
tection.

2 MATERIAL AND METHODS 

2.1 Study area and materials 

The study area covers 30,170 ha and includes 22 
municipalities located in the Alt (Upper) Empordà 
Plain (in the northeast of Spain), with the following 
UTM 31-North zone coordinates: 489 990, 515 010, 
4 660 410 and 4 689 990. The area does not exceed 
100 metres above sea level and is replenished with 
neogen and quaternary sediments. The landscape is 
drained by two primary river systems: the Muga and 
the Fluvià.

Traditionally, this plain has specialised in herba-
ceous crops, mainly cereals and fodder, located in 
fragmented parcels and often with the same crop 
sown at different dates through the year. The area of 
irrigated fields has increased since the mid 1960s 
due to the Boadella reservoir project, the canalisa-
tion of the Muga River and the intensive exploitation 
of the aquifer around the Fluvià river mouth. 

The spectral response of many cover types varies 
throughout the year: categories that appear very 
similar in spring may become distinguishable at ear-
lier or later stages of the annual cycle. For this rea-
son three multispectral images were used for each of 
the periods considered: three Landsat MSS images 
for the 1970s (17 July 1977, 2 June 1978 and 18 
September 1978; the 4 spectral bands were consid-
ered), and three Landsat TM images for the 1990s 
(16 May 1992, 28 June 1993 and 31 August 1993; 
thermal bands were not used). 

2.2 Methodology

2.2.1 Geometric and radiometric corrections 
The first step was the geometric correction using the 
procedure developed by Palà and Pons (1995). Dur-
ing the geometric correction, MSS images were re-
sampled to 60 m x 60 m while TM images were re-
sampled to 30 m x 30 m (nominal resolution for 
MSS images is 79 m x 57 m (Campbell 1996), while 
for TM images it is 30 m x 30 m). In both cases the 
resampling method was the nearest neighbour to 
preserve the original image radiometry. Georefer-
encing was done using a mean of 26 Ground Control 
Points (GCPs) per image. The accuracy of the geo-
referencing was assessed through the root mean 
square (RMS) of the location of independent test 
GCPs (a mean of 14 GCPs per image). In our case, 
the MSS images had a RMS error of about 0.9 pixels 
while in the TM images the error was about 0.7 pix-
els.

The second step was the radiometric correction, 
through which digital numbers were converted into 
reflectance values using the sensor calibration pa-
rameters and other factors such as atmospheric ef-
fects, solar incident angle accounting for the relief, 
etc. (Pons and Solé-Sugrañes, 1994). The resultant 
corrected images presented a coherent range of re-
flectance values.

2.2.2 Legend
As mentioned before, herbaceous crops are pre-
dominant in the study area. According to our field 
experience and to agricultural studies (Ministerio de 
Agricultura, Pesca y Alimentación 1982; Pujol 
1985), we defined the following categories: in the 
case of 1977, eleven LCLU categories were estab-
lished: dry and irrigated maize, other dry herbaceous 
with fallow land, other irrigated herbaceous, fruit
trees, olive trees, vineyards, meadows and pastures, 
woodlands and shrublands, uncultivated pastured 
lands, unproductive lands (quarries, etc.), urban sur-
faces (villages, etc.) and rivers and lagoons. For 
1993 we had the same classes as in 1977 plus two 
new categories: rice, which was reintroduced in 
1985, and dry and irrigated sunflower, which was 
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favoured by the Common Agriculture Policy subsi-
dies since 1986. 

2.2.3 Classification
Traditionally, classification strategies have been di-
vided into two broad categories: supervised and un-
supervised. The supervised approach involves the 
selection of areas on the image which statistically 
characterise the informational categories of interest, 
while the unsupervised approach attempts to identify 
spectrally homogenous groups within the image that 
are later assigned to informational categories (Rich-
ards 1993, Chuvieco 1996). A third category would 
be the hybrid classification approaches (Estes et al.
1983, Townshend 1992).

The most commonly applied supervised classifi-
cation method is the maximum likelihood procedure 
because of its robustness; nevertheless, it has the un-
derlying assumption of a normal (Gaussian) distribu-
tion of the data within each class. If a class is multi-
modal, the modelling is not very effective (Richards, 
1993). In our research this method was not consid-
ered adequate because crops did not follow normal 
distributions due to the different stages of growth in 
the different fields covered by the training areas (dif-
ferent crop development) and water availability (dry 
and irrigated). 

In the conventional procedure of the unsupervised 
classification, spectral classes of pixels are first 
identified by cluster analysis. ISODATA (Interactive 
Self Organizing Data Analysis) is a non-hierarchical 
clustering algorithm commonly used in remote sens-
ing (Richards, 1993). Once the clusters are obtained, 
‘rules of correspondence’ between the spectral and 
the LCLU categories are established; these rules are 
normally known through fieldwork or ancillary in-
formation (ground data). The standard procedure of 
unsupervised classification is based on the assump-
tion that each spectral class corresponds to one and 
only one LCLU category and vice-versa, but this 
does not always work because there are different 
possible patterns of correspondence (Lark 1995):
1. One spectral class corresponds to one LCLU 

category. This is the ideal situation but it is often 
not the case due to the reasons explained above. 

2. Several spectral classes correspond to one 
LCLU category or, equivalently, an LCLU cate-
gory is formed by several spectral classes. Usu-
ally this situation does not cause problems if us-
ing appropriate classification techniques taking 
advantage of the fact that, as a result of an unsu-
pervised classification, we can have more spec-
tral classes than LCLU categories. 

3. One spectral class corresponds to more than one 
LCLU category. For example, the response of a 
bare soil can sometimes be allocated to a re-
cently harvested field or to unproductive land. 
This is the most problematic situation and it is 
caused because an LCLU category is indistin-

guishable from another using the available spec-
tral data (from all dates), or because the spectral 
classes are too broad. In this case, the LCLU 
categories may, perhaps, be distinguished if a 
larger number of narrower spectral classes are 
sought.

In our case, the classification was performed by 
means of a hybrid classifier, which may be able to 
deal with most of the situations mentioned above. 
This classifier combines two modules of the 
MiraMon software (Pons 2000): ISODATA and 
CLSMIX. The procedure both involves unsupervised 
classification and training areas (collected as in the 
first stage of a conventional supervised classifica-
tion). The unsupervised classification uses the ISO-

DATA algorithm, and then the CLSMIX module as-
signs the spectral classes (obtained by the ISODATA

algorithm) to LCLU categories by using the training 
areas. As the ISODATA module allows a large number 
of spectral classes to be found, the third situation de-
scribed above is avoided in most cases (we worked 
with 84 final classes for the 1970s and with 98 final 
classes for the 1990s). We did not run ISODATA with 
the original images, but rather with the first principal 
components resulting from a principal component 
analysis performed on each period: 12 MSS bands 
were input for the 1970s (we used the first four PCs, 
explaining 93.9% of the variance) and 18 TM bands 
were input for the 1990s (we used the first six PCs, 
explaining 96.1% of the variance). 

In order to achieve an accurate classification, 
perhaps the most important part of the process lies in 
the CLSMIX module. As input parameters the module 
needs:
1. The image resulting from the unsupervised clas-

sifier.
2. The training areas. 
3. The threshold proportion at which to accept a 

spectral class as being a part of an LCLU cate-
gory in terms of the proportion of the spectral 
class that is inside the LCLU category. For ex-
ample, 0.6 will mean that if 60% or more of the 
spectral class is inside the training areas of a 
given LCLU category, then this spectral class 
will be assigned to this LCLU category. 

4. The threshold proportion at which to accept a 
spectral class as being a part of an LCLU cate-
gory in terms of the proportion of the LCLU 
category that is formed by a given spectral class. 
For example, 0.01 will mean that if 1% or more 
of the LCLU category is formed by a given spec-
tral class, this spectral class will be assigned to 
the LCLU category. 

The required thresholds (points 3 and 4 above) 
must be obtained empirically, but since the execu-
tion of CLSMIX is extremely fast (as it only performs 
comparisons), they can be easily adjusted after some 
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iteration, especially if independent ground data is 
available, to converge to an optimal solution. 

Note that when classifying a given pixel, the 
module chooses the category that has the more ‘rea-
sonable’ assignation: 
1. Spatial correspondence between the spectral 

class and the training areas of that LCLU cate-
gory (the spectral class is inside the training 
area).

2. The spectral class is mainly inside this LCLU 
category (an important proportion of the spectral 
class belongs to the category). 

3. The spectral class is a not insignificant part of 
the LCLU category. 

Conversely, a pixel will remain unclassified if no 
training area covers pixels in the same spectral class 
or if, given the input thresholds, no spectral class is 
adequate for it: that is either the pixel belongs to a 
class that is split too much between two or more 
LCLU categories (no clear LCLU tendency of the 
spectral class) or the pixel belongs to a class that is 
poorly representative of the total area of any LCLU 
category (perhaps the spectral class is noisy). 

In our case, the two required thresholds were 42% 
and 1% for MSS and 36% and 1% for TM.

Finally, note that unsupervised classifications 
usually present two main problems:  
1. the number of clusters to choose is critical and, if 

very large, it is hard to do the final assignation to 
LCLU categories (Richards 1993, Chuvieco 
1996), and 

2. it is necessary to manually define the rules of 
correspondence between clusters and LCLU 
categories (Lark 1995). 

These two problems are not present in this hybrid 
classification because it is an automatic and objec-
tive process (simply choose a large number of clus-
ters). Of course, in this case it is necessary to define 
training areas, but some ground data knowledge is 
always needed (even in conventional unsupervised 
classification) and we consider that the time devoted 
to digitising these training areas is compensated by 
the objectivity of the assignations. 

3 PROTOCOL FOR REALISTIC ACCURACY 
ASSESSMENT OF LCLU CHANGES 

As has been discussed above, several aspects should 
be considered in order to obtain a rigorous accuracy 
assessment of LCLU changes from a pair of LCLU 
maps of different dates obtained from different sen-
sors. The proposed protocol should take into account 
the following three main issues: 
1. To assess the overall accuracy resulting from the 

overlay, the overall accuracies of the two maps 
must be multiplied. In our case we decided to ac-

cept an accuracy of from 75% upwards for the 
final product of the two overlaid classifications 
(but higher for each individual classification). 

2. Erode the boundaries of the polygons to avoid 
comparing areas with locational inaccuracy. As-
suming that the calculated accuracy in point 1 is 
satisfactory, when the two maps to be compared 
are overlaid, the area around the polygon 
boundaries is not reliable because the maps have 
some planimetric error. Those areas where some 
error exists should not be used for LCLU change 
detection, because false positive or negative 
changes could result. Moreover, the number of 
mixed pixels (heterogeneous) increases substan-
tially along polygon boundaries and thus severe 
spectral confusion may lead to classification er-
rors, contributing also to this uncertainty (Camp-
bell 1996). The solution is to eliminate these un-
certain areas, which can be done, in raster mode, 
by applying an erode procedure.
To apply the erosion it is necessary to define 
some parameter that indicates the area to erode. 
As all the images usually have the RMS error 
computed in the geometric correction stage and 
this parameter has the statistical meaning of the 
standard deviation of the errors (assuming they 
are normal), the RMS could be used in this 
sense.
Nevertheless, the RMS is not the only parameter 
to take into account. The degree of fragmentation 
also heavily affects the number of points that 
present an erroneous location in polygon-based 
maps. Indeed, because this inaccuracy is related 
to the boundaries of polygons (patches), but not 
their inner parts, a very homogeneous landscape 
(large patches) is less affected than a very frag-
mented landscape. We carried out tests with 
some images corresponding to areas of different 
degrees of fragmentation and simulating several 
RMS errors (from less than 0.5 pixels to 2 pix-
els) (Figure 1). In each case, the images were 
mis-registered with a random function of mean 0 
and standard deviation equal to the RMS, and 
then overlaid with the original to calculate the 
number of pixels erroneously located. When an 
image has a low RMS error (less than 0.5 pixels) 
and a low fragmentation, it is not necessary to 
erode because 99.2% of the points remain in the 
same location. Conversely, on an image in a very 
fragmented landscape with an RMS of 1 pixel, 
only 56.1% of the points remain in the same lo-
cation, while 94.1% remain in the same location 
when an erosion of 1 pixel is applied. These re-
sults indicate that a conservative approach for 
medium to highly fragmented landscapes is to 
erode 1 pixel in order to avoid comparison arte-
facts. In our images, with an RMS of nearly 1 
pixel and a quite fragmented landscape, eroding 
1 pixel guaranteed, for the MSS images, that 
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97.9% of the points were correctly located while, 
if no erosion were applied, only 66.5% of the 
points would have been reliable (i.e., 33.5% of 
points would have been outside their correspond-
ing polygon). It is important to note that these 
figures affect the overall accuracy resulting from 
multiplying the accuracy of each layer. For ex-
ample, using an erosion of 1 pixel on the MSS 
classification only slightly decreases the final ac-
curacy, but overlaying without erosion would re-
duce its accuracy by a factor of 0.665. 
Finally, we note that the erosion process can also 
improve the comparison because it tends to 
eliminate some of those pixels that may be more 
difficult to classify (mixed pixels). 

3. Resample the two layers accounting for the dif-
ferent pixel size and grid origin. This should take 
into account modal aspects of the resampling 
window.

Figure 1. Percentage of pixels well located according to differ-
ent geometric errors in the classifications (RMS in pixels) be-
fore and after eroding one pixel, in landscapes with low frag-
mentation (above), quite fragmented (below) and very 
fragmented (right), respectively. 

4 RESULTS AND DISCUSSION 

The test of the two final maps (1970s and 1990s) 
was performed by means of new, independent, train-
ing areas (not the same areas used to run clsmix) 
considered as ground data (also identified from field 
work, aerial photos and orthophotos). For the 1970s, 
the overall accuracy was 91.8% and, for the 1990s, it 
was 95.2%. According to our results, the product of 
the accuracies obtained from the independent train-
ing areas was 87.4%. It is important to note that 
87.4% is not the final accuracy of the LCLU change 
analysis, this value must be decreased by the factor 
given by the locational inaccuracy of both layers, as 
we show below. 

In our case we decided to erode 1 pixel all around 
each polygon. Given the RMS of our images and the 
degree of fragmentation of our landscape, eroding 1 
pixel on the MSS images guaranteed that the 97.9% 
of the points were correctly located, while on the 
TM images this figure reached 99.5% (without ero-
sion the figures are 65.8% and 76.3% respectively). 
These results indicate that eroding 1 pixel on each 
layer gives a final accuracy for the LCLU change 
analysis of 87.4%*0.979*0.995 = 85.1%. Note that, 
although the combined accuracy of 87.4% appears to 
be sufficient (and several authors suggest this indica-
tor), if erosion is not applied the real resulting accu-
racy for the LCLU change analysis is 
87.4%*0.658*0.763 = 43.9%. 

After the erosion, 85.8% of the study area became 
nodata in the 1970s classified image and 73.6% in 
the 1990s classified image. Due to the spatial frag-
mentation present in our area, these are significant 
proportions but they permit a rigorous comparison 
(avoiding misregistration problems) between the two 
maps. Indeed, it is important to point out that not 
eroding of the polygon boundaries leads to very poor 
results when comparing the two classified images 
(43.9%, or less since the boundary pixels are often 
the most difficult to classify). It is also worth noting 
that our case is an extreme one (high landscape 
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fragmentation, especially regarding the pixel size in 
the case of MSS) and that most users would erode a 
smaller fraction of their images. In other words, 
some users might be tempted not to use this method-
ology to avoid area losses, but they would risk re-
ducing the reliability of the results of their compari-
sons.

5 CONCLUSIONS 

This paper uses a post-classification comparison for 
LCLU change detection. This methodology requires 
each of the classifications to have a high accuracy, a 
goal not always reached when a legend with several 
agricultural categories is needed. In addition, it be-
comes more difficult in fragmented landscapes like 
our study area. The results of the hybrid classifica-
tion method have been successful, solving the prob-
lem of choosing the number of clusters and the pat-
terns of correspondence between spectral classes and 
LCLU categories, and giving a high degree of classi-
fication accuracy.

In this work we have emphasised the need, when 
carrying out LCLU change analyses, to take into ac-
count the different classification accuracies, frag-
mentation of the landscape, planimetric accuracies, 
pixel sizes and grid origins. The proposed protocol 
has been applied without a significant increase of ef-
fort and the results are more reliable than a direct 
overlay. The drawback of this method is that it re-
duces the useful area of comparison, in our case sub-
stantially. However, it should be noted that when di-
rectly overlaying two classified images with an RMS 
of about 1 pixel in quite fragmented landscapes, the 
amount of noisy results (false positives and nega-
tives) can be critical for the interpretation of the out-
comes (more than 30% of the information can be un-
reliable). For instance, studies may find a change of 
10% deduced from an overlay, but probably this will 
be mainly due to problems in the boundaries of the 
polygons. With the protocol proposed in the present 
paper, the comparison of LCLU is based on a sam-
ple, but a sample taken from the more reliable part 
of the polygons (the inner part). From our point of 
view the choice is clear: renouncing part of the data 
produces conclusions that are far more reliable. 

Although it may be advisable to avoid mixing 
sensors and spatial resolutions, currently, and even 
more in the future, the problem of overlaying re-
motely sensed data from different sources with a his-
torical perspective will increase due to the availabil-
ity of new sensors with higher spatial resolutions at 
15, 10, 5, 1 metre and beyond; hence the importance 
of establishing protocols for LCLU change assess-
ment.  
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