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ABSTRACT: Speckle is a troublesome noise, disturbing radar SAR image interpretation and target 

classification. For reduction of speckle, numerous speckle filters have been proposed. Both suppression of 

speckle in a uniform area and preservation of edges have been pursued in these filters. In these years, the 

wavelet transformation is widely applied to images analysis, where the multi-resolution analysis by Mallat 

1989) gives the theoretical basis. In this communication, we mainly study and compare two types of filters in 

a DWT framework: the ones based on the "à trous" algorithm of Dutilleux (1987), and those we develop using 

the "Mallat" algorithm (1989). For the first type, we apply either the  Gaussian Gamma MAP and the 

Laplacian Gamma MAP filters to the wavelet coefficients got from the 'à trous' algorithm and we obtain the 

filtered image by the filtered images of the wavelet coefficients. For the second type, we use the "Mallat" 

algorithm with different wavelet bases instead of the "à trous" algorithm and we develop and discuss the case 

of Haar, Daubechies 4, 6, 8 and Biorthogonal (linear B-Spline and Battle Lemarie) Wavelets in two 

dimensions and show how they can be used for speckle reduction of SAR images.  

.

1 INTRODUCTION

The speckle, appearing in synthetic aperture Radar 

(SAR) images as granular noise is due to the 

interference of waves reflected from many 

elementary scatters. This speckle in SAR images 

complicates the problem of image interpretation by 

reducing the effectiveness of image segmentation and 

classification; various ways have been devised to 

eliminate it. 

The primary goal of the filtering ought to be 

reduction of the speckle noise without sacrifying the 

information content. The ideal speckle filter should 

adaptively smooth the speckle noise, retain the edge 

and the sharpness of the boundaries of the feature, 

and also preserve the subtle but distinguishable 

details, such as thin linear features and point targets.

We present in this paper a new method of speckle 

filtering based on the MAP approach which use 

multiresolution tool.   

2 SPECKLE FILTRING TECHNIQUES 

The speckle noise, which appears in SAR images, is 

generally modelled as a multiplicative noise: 

( ) ( ) ( )j,in.j,ifj,ig =                           (1) 

Where ( )j,ig  is the intensity of an observed image 

pixel, ( )j,if  is the noise-free image pixel we wish to 

recover and ( )j,in  is the noise, characterized by a 

distribution with a unit mean (E[n]=1) and a standard 

deviation nσ .

Much work has been carried out in the past 

concerning noise reduction. The most well known 

filters are adaptive filters based on the local statistics 

such as the Lee filter [3], Frost filter [4], and Kuan 

filter [5]. They reduce the speckle noise as a function 

of degree of heterogeneity measured by the local 

coefficient of variation. Hence refined algorithms 

have been proposed first by Lee [6] for the edge 

problem only. Edge denoising and preservation are 

performed by redefining the neighbourhood near the 

high contrast region. 

Several ways to reduce speckle have been 

proposed [7] [8]. It has been accepted that some 

filters display superior performance over the others 

in smoothing speckle noise at homogeneous areas, 

while others display superior performance at the 

vicinity of edges. 
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3 THE MAP APPROACH FOR SAR IMAGES 

The MAP estimate is obtained by maximizing the 

Bayes criterion with respect to R: I is the speckled 

intensity vector available in the actual SAR data; R is

the radar reflectivity vector which is the quantity we 

want to restore. The Maximum A Posteriori (MAP) 

filtering method bases on the famous Bayes theorem: 

( ) ( )
)(

)(.

IP

RPRIP
IRP =                               (2) 

where P(R/I) corresponds to the PDF of the speckle 

which is a Gamma distribution. The MAP filter is 

calculated by the equation (3): 

( )[ ] ( )[ ] ( )[ ] ( )[ ]RPLogIPLogRIPLogIRPLog +−=          (3) 

which gives the MAP estimate of R when 

( )[ ]RIPlog is maximum, then: 

( )[ ] ( )[ ] ( )[ ] ( )[ ]RPLog
R

RIPLog
R

IPLog
R

IRPLog
R ∂

∂+
∂
∂=

∂
∂+

∂
∂     (4) 

The filter equation becomes: 

( )[ ] ( )[ ] 0RPLog
R

RIPLog
R

=
∂
∂+

∂
∂                     (5) 

when MAPR̂R = .

3.1    Gauss-Gamma map filter   

Assuming the Kuan hypothesis, the Gauss-

Gamma MAP filter equation (5) is given by: 

( )
0

1][
22

=−−−
RR

I
L

RER

Rσ
                    (6) 

( ) 0ˆˆ][ˆ 223 =−+− IRLRRER Rσ       

and the MAP estimate of R is the solution of this 

equation by used a Newton iterative method. More 

realistic texture models are introduced by Lopes et 

al. [9] by replacing the Gaussian probability density 

function by a Gamma and a symmetrical Beta PDF's. 

3.2    Gamma-Gamma map filter 

Many authors have established that the detected 

intensity of scattering can well be represented by a K 

distribution. This situation is obtained when the 

coherent wave is scattered by a surface having a 

Gamma distributed. It is assumed that both the radar 

reflectivity and the speckle noise follow a gamma 

distribution. The radar reflectivity distribution P(R)

is therefore described by: 

( ) ( )
1

][
exp

][

1 −
Γ

−
Γ

= ααα
α

R
RE

R

RE
RP            (7)

where α represents the spatial heterogeneity 

parameter of radar  reflectivity describing the texture 

of the scene, is given by:

2
RC

1=α                                       (8) 

L represents the equivalent number of looks and CR

represent the local coefficient of variation of the 

scene, is given by: 

[ ]RE
C R

R

σ
=                                          (9) 

The speckle distribution P(I/R) is given by:

( ) ( )
R

LI

L

L

e.I.
L

.
R

L
R/IP

−−

Γ
= 11

                      (10) 

The Maximum a priori term is then equal to: 

( )[ ]
RR

1
RPlog

R

α−−α=
∂
∂

Γ                 (11) 

The Gamma-Gamma MAP filter equation is given 

by:

( ) 0]I[E.I.LR̂].I[EL1R̂2 =−α−++α            (12) 

The MAP estimate of the radar cross-section for K 

distribution is given by: 

( ) [ ] ( )
α

α+−−α+−−α
=

2

]I[E.I.L.41L.]I[EIE.1L
R̂

22

MAP
  (13) 

The MAP estimate of R is a non linear combination 

of the observed intensity I and the local mean 

intensity E[I], where I is the value of the pixel to be 

corrected.

L. Gagnon (1999) were proposed an a modified 

version for the Gamma-Gamma filter, when α is 

equal to [10]: 

[ ] 1.

1
2

−

+=

RE
L

L

Rσ
α                                (14) 

3.3    Beta-Gamma map filter 

With the Beta-Gamma Maximum a Posteriori (MAP) 

it is assumed that the radar reflectivity follows a Beta 

distribution, and the speckle noise follows a Gamma 

distribution. The Beta distribution is a positive 

distribution with 3 parameters: a scale parameter 

Rmax and two parameters m and n. According to these 

last two parameters, the Beta distribution has great 

form diversity and can be used as a SAR image 

model or scene model [9]. In this paper we study the 

Beta symmetric role, when n=m. The radar 

reflectivity distribution P(R) is therefore described 

by:
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( ) ( )
( )

11

2
1

2
−−

−
Γ
Γ=

m

max

m

max

BS
R

R

R

R

m

m
RP (15)

The Maximum a priori term is then equal to: 

( )[ ]
RR

m

R

m
RPLog

R max

BS −
−−−=

∂
∂ 11

                   (16)

we are interesting to the case for n=m=1, so the Beta-

Gamma MAP filter equation is given by: 

( ) ( )[ ] 023232 =+−+−++− I.I.LLII.LR̂LR̂ αα  (17)

The MAP estimate of the radar reflectivity is given 

by:

( ) ( )[ ] ( )
( )32

6223232
2

+−
−++−−−−−+

=
α

ααα
L

I.LILILIL.ILI
R̂MAP (18)

4 MULTIRESOLUTION ANALYSIS AND 

WAVELETS

Let us define multi-resolution analysis of L² (R). It 

represents a sequence of closed subspaces Vj∈L² (R) 

satisfying the following properties: 

a. Vj∈  Vj+1.

b. { }0V)R²(LV zjjzj == ∈∈ IU .

c. ( ) 1jj V)x2(fVxf +∈−∈ .

d. ( ) Zk,VkxfV)x(f 00 ∈∈−−∈ .

e. There exists a scaling function, 0V∈ϕ  such 

that ( ) zkkx ∈−ϕ is a basis of V0.

It is clear from these proprieties, that the collection of 

function { }
Zkk,j ∈

ϕ defined as ( ) ( )kx22x j2j

k,j −ϕ=ϕ ,

is a basis of Vj .The k,jϕ functions, will be used to 

approximate the functions of L²(R). Since the union 

of all the Vj spaces is dense in L² (R). 

Let us denote Wj a space complementing Vj in Vj+1,

that satisfies Vj+1=Vj ⊕ Wj, where ⊕ stands for 

direct sum. Consequently, we have ⊕ Wj=L² (R). A 

function χ is a wavelet if the collection of functions 

( ){ }Zkkx ∈−χ is a basis of W0. The collection wavelet 

function{ }
Zkk,j ∈

χ defined as ( ) ( )kx22x j2j

k,j −χ=χ  is 

a basis of L²(R). 

The spaces Wj contains the "detail" information 

needed to go from an approximation at resolution j to 

an approximation at resolution j+1. 

4.1 Wavelets filter 

Details about the theoretical foundation of DWT can 

be found in numerous places. Here we will give a 

brief summary in terms of linear algebra and for a 1D 

signal. One can extend the description to images, 

similarly than Fourier transform, i.e. by processing 

rows and columns sequentially. 

A one-level DWT of a vector 

( )nxxx ,...1=
r

(representing the N samplings of a 1D 

signal) is represented by a (generally complex) NxN

block-circulant matrix W. The vector w
r

of wavelet 

coefficients is then simply given by xWw
rr

.= . The 

inverse transform is represented by a matrix W
~

such 

that IWW =.
~

.

If the transform is orthogonal, then TWW =~
,

otherwise the DWT is said to be bi-orthogonal. The 

fundamental block of W is a 2xL matrix B (L<N)

where one row operates as a low-pass filter while the 

second is a high-pass filter. The elements of B

depend on the bi-orthogonality and regularity 

conditions imposed to the wavelet basis. Half of the 

elements of w
r

encodes the local details of x
r

(the so-

called wavelet coefficients) while the other half 

encodes the local tendencies. A multi-level DWT is 

computed via a pyramid algorithm where a half 

smaller matrix W operates on the “tendency” outputs 

of the previous level [10]. 

4.2 Basic idea and algorithm 

The three detailed images in the subspace of the n-th 

level contain high spatial frequency information of 

the approximated image of the level (n-1)th level 

subspace. The detail images in the first level 

subspace contain high frequency information of the 

original image. The amplitude (the wavelet 

coefficient) of a pixel in the detail images takes a 

positive or negative value, and its expected mean is 

zero. The basic idea of the speckle reduction filter 

that we propose is:       

Step 1.Decompose a SAR image into the wavelet     

subspace images with a pyramidal structure. 

Step 2.Reduce the amplitude of each pixel in the      

detail images of each subspaces by applying a 

MAP filter in each subspaces.   

Step 3.Reconstruct an output image from the 

modified  subspaces images. 

Our approach is to use the Mallat and the à trous 

[11] algorithm, like multiresolution tools.  

4.3   A trous algorithm 

The "à trous" is developed by Dutilleux (1987), it is 

used to realise a discrete "one-dimensional" wavelet 

transformation. It provides successive approximation 

of the original image with coarser and coarser 

resolution.  
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The difference of information between two 

successive approximations of a function f(x) is called 

wavelet coefficients, the wavelet coefficients are 

given by: 

( ) ( )xfxfC j1j1j −= ++                       (19) 

The original image can be reconstructed as follows: 

( )
=

+=
I

1j

jj )x(Cxf)x(f                    (20) 

For each resolution, the algorithm "à trous" produces 

single wavelet image coefficients. It has the propriety 

of complete reconstruction. However, this algorithm 

is neither an orthogonal nor a biorthogonal 

multiresolution analysis [12]. The application for this 

algorithm in the image, by using a low-pass filter 

given by: 

16

1

8

1

16

1

8

1

4

1

8

1

16

1

8

1

16

1

4.4    Mallat algorithm 

a. Decomposition
Although also applying in the mono-dimensional 

case, the concept of the analysis multi-resolution 

described previously, was introduced by Mallat 

(1989) for an application to the image.  To this goal, 

one introduces a function of separable two-

dimensional scale defined by: 

( ) ( ) ( )y.xy,x k,jk,j ϕϕϕ =                         (21) 

when ( )xk,jϕ and ( )yk,jϕ  are related respectively to 

scale applied in the direction "X", and the function of 

scale applied in the direction "Y".  The orthogonal 

base of ( )jV  is then given by: 

( )[ ]( ) ( ) ( )[ ]( ) 22 ,22,2
2.222,22

Ζ∈
−−−

Ζ∈
−−− −−=−−

nm

jjj

nm

jjj mynxmynx jjj ϕϕϕ  (22)

The discrete approximation of the signal ( )y,xf   to 

the resolution j2  is defined by: 

( ) ( ) ( )[ ]( ) 222
222 Ζ∈

−− −−=
n,m

jjd my.nx,y,xffA jjj ϕϕ  (23)

The expression of the difference in existing 

information between two successive approximations 

of the same image is carried out using three 

directional wavelets which are expressed in the form: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )y.xy,x

y.xy,x

y.xy,x

k,jk,j

V

k,jk,j

H

k,jk,j

D

ϕψψ

ψϕψ

ψψψ

=

=

=

                  (24) 

when VHD ,, ψψψ are respectively the wavelets 

allowing the calculation of the difference in 

information in the diagonal, horizontal and vertical 

directions.  The signals of details to the resolution 
j2 are given by: 

( ) ( )[ ]( ) 222
22 Ζ∈

−− −−=
n,m

jjHH my,nx,y,xfD jj ψ
(Vertical details) 

( ) ( )[ ]( ) 222
22 Ζ∈

−− −−=
n,m

jjVV my,nx,y,xfD jj ψ
(Horizontal details) 

( ) ( )[ ]( ) 222
22 Ζ∈

−− −−=
n,m

jjDD my,nx,y,xfD jj ψ
(Diagonal details) 

     As in the mono-dimensional case, the calculation 

of the successive approximations is carried out using 

the numerical filters.  In the case of the image, the 

filters will be applied in lines then in columns. 

b. Reconstruction
The reconstruction is done in a recursive way.  One 

will thus reconstruct all the approximations through 

the axis of the resolutions by adding to the discrete 

approximation with the resolution j2  the signals of 

the corresponding details. 

4.5    The distribution of wavelets coefficients 

The standardized histogram or, the function of 

density of probability (PDF) informs us about the 

distribution of the values of radiometry. Thus, in an 

original image, the PDF is in general multimode and 

difficult to model.  The histogram of a sub image of 

coefficients of wavelets is unimodal and very 

pointed.  That has a weak standard deviation, average 

null and a great number of coefficients of wavelets of 

low value. That can be modelled by a generalised 

Gaussian distribution (Antonini, 1991) defined by 

[13]:

( ) ( )βδα x.exp.xPGG −=                               (25) 

With:

Γ
=

β

βδα
1

2

.   and

Γ

Γ
=

β

β
σ

δ
1

3

1

Where σ is a standard deviation of the modelled 

distribution.

In figure (1a) we present the distributions of the 

coefficients of wavelets, of a sub image of details 

deduced from the algorithm of a trous.  

In figure (1.b, c, d) we present the distributions of 

the coefficients of wavelets, of each image of details 

deduced from the algorithm of Mallat (vertical 

details, diagonal details and horizontal details). 

In figure (3)(e)-(h) we present the filtered images; 

(e) the proposed filter using the Haar basis, (f) the 
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same using the D4 basis, (g) the same using the D6 

basis, (h) the same using the D8 basis, and (i) the 

same using the Spline2 basis.   

Figure 1. a) Practical wavelets coefficients image distribution 

deduced from the à trous algorithm; (b), (c), and (d) represent 

the three sub space images deduced from the Mallat algorithm. 

4.6   Description of the filter 

The proposed filter is based on the Bayesian 

approach, established under Gamma speckle model 

and the generalised Gaussian wavelets coefficients 

model. The models of distributions of the coefficients 

of wavelets (the scene) and speckle are: 

•••• Distribution of the scene: ( ) ( )βδα R.exp.RP −=
•••• Distribution of the speckle:

( ) ( ) −
Γ

= −

R

L
expI

LR

L
R/IP L

L

11

The Maximum A posteriori term is then equal to: 

( )[ ] 1−−=
∂
∂ ββδβ R..RPLog
R

                         (26) 

The Maximum likelihood term of Probability is 

equal to: 

( )[ ] −=
∂
∂

RR

I
.LR/IPLog

R

1
2

                     (27) 

The equation of filter MAP is given by: 

( )[ ] ( )[ ] MAPR̂pourRRPLog
R

R/IPLog
R

==
∂
∂+

∂
∂

0  (28) 

By replacing the equations (26) and (27) in (28), 

which brings us to the general expression of the 

Gauss-Generalized-Gamma MAP filter which is: 

01 =−++ I
.

L
R

.

L
R ββ

β

δβδβ
                    (29) 

Two cases arise for the resolution of the general 

equation of the filter: 

• First case for β=1:

In this case the distribution of the coefficients of 

wavelets approaches as well as possible with a 

Laplacian law. In this case the filter is known as 

Laplace-Gamma MAP and its equation becomes: 

0
12 =−+ I

L
RR

δδ
                             (30) 

when
Iσ

δ 2= I is the intensity of the pixel to treat 

image of coefficients of wavelets, Iσ  is the standard 

deviation local in the image of coefficients of 

wavelets and L is the number of looks.

The equation (30) of the second degree admits a 

real solution ranging between the average E[I] and 

observed I is given by: 

++−=
δδδ

c

LG

I.LLL
R̂

MAP
4

2

1

2

2

          (31) 

• Second case for β=2:

In this case the distribution of the coefficients of 

wavelets approaches as well as possible with a 

Gaussian law. In this case the filter is known as 

Gauss-Gamma MAP and its equation becomes: 

0
2222

3 =−+ I
.

L
R

.

L
R

δδ
                           (32) 

The equation (32) admits a real solution ranging 

between the average E[I] and the observed I, that one 

will solve in an iterative way by the method of 

Newton.

With: 

I
σ

δ 0.7071=                                                 (33)           

The application of the filter implies the determination 

of two thresholds aS and bS .

Three cases arise, in the first case ( aI S≤< σ0 ), one 

assigns the average value of the window of treatment 

the central pixel, which corresponds to low values of 

the standard deviation, the second case 

( bIa SS << σ ), one applies the filter and in the last 

case ( bI S≥σ ), one preserves the value of the pixel 

to be treated because it has a structure with strong 

diffusers.  The choice of the values of the thresholds 

is carried out according to the following relation: 

c d

a

Pdf of wavelet coefficients 
Pdf of wavelet coefficients 

Pdf of wavelet coefficients 

c d

Pdf of wavelet coefficients 
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≅
≅

σ
σ
2b

a

S

S
                                      (34) 

When σ is the standard deviation of the image of 

coefficients of wavelets. 

The expression of the filter, taking account of the 

thresholds, is rewritten in the following way: 

=≥

<<

=≤<

cMAPbI

bIa

MAPaI

IRS

SS

IRS

ˆ

loperationaisfilterThe

ˆ0

σ

σ

σ

     (35) 

5 COMPARISON CRITERIA 

Two methods of evaluation are regularly used: 

The first is the visual appreciation, which consists 

in checking the clearness of the image, as well as the 

safeguarding of edges and the structures.  Figure (3) 

is a zoom produced on the image of Laghouat 

presented in figure (2).  It makes it possible to 

visualize the effects of the various filters on the 

structures. Nevertheless, this method remains 

insufficient to characterize the effectiveness of a 

filter. 

The second method is based on statistical criteria 

necessary to objectively quantify the quality of the 

filtered image; a set of criteria will be established to 

measure the retention of the mean value in 

homogeneous areas, the speckle reduction capability, 

edge sharpness, thin feature preservations and point 

target retention. 

• Speckle reduction 

In homogeneous areas, the equivalent number of 

looks (ENL) is also frequently used to measure the 

amount of speckle reduction. The ENL for amplitude 

SAR images is defined as: 

2
522.0=

A
C

ENL
                                (36) 

• Radiometry preservation 
This parameter makes it possible to evaluate the 

skew of estimate of average radiometry on a broad 

homogeneous zone introduced by filtering.  It is 

calculated in decibels (dB) by: 

( ) =
I

IFLogdBBias
µ

µ
10

                       (37) 

When Iµ  and IFµ  indicate respectively average 

radiometry of a homogeneous zone estimated 

respectively in the original image and the filtered 

image. 

6 APPLICATION AND RESULTS 

The generalised Gaussian Gamma filter has been 

applied on an ERS-1 SAR image corresponding to an 

area of southern Algeria called Laghouat. The filter 

proposed is compared with other known filters 

(Gauss Gamma MAP, Gamma Gamma MAP…etc). 

The results are reported in table 1. Table 1 gives the 

comparison ENL and Bias for various filters, using 

an original 3-looks image.  

Table 1: Comparison of speckle reduction 

Image Mean CI ENL Bias(dB) 

Original 81.712 0.286 3.348 0

Gauss-Gamma MAP 81.901 0.160 10.68 0.023 

Gamma-Gamma MAP 79.842 0.159 10.82 -0.232 

Beta-Gamma MAP 80.958 0.157 10.85 -0.093 

Modified Gamma-Gamma 

MAP 80.219 0.153 11.61 -0.184 

Gauss-Gamma with 

Haar 81.967 0.218 5.756 0.0311 

Daubechies4 81.262 0.227 5.298 -0.0551 

Daubechies6 80.708 0.218 5.758 0.0117 

Daubechies8 81.766 0.221 5.585 0.0066 

Spline2 80.880 0.212 6.049 -0.1024 

Laplace-Gamma using 

the “a trous” algorithm 80.494 0.221 5.621 -0.1502 

Gauss-Gamma using the 

“a trous” algorithm 81.346 0.216 5.866 -0.0449 

7 CONCLUSION 

In this study we developed a new filter called 

Gaussian Generalised Gamma filter which is applied 

to SAR images. We noted that the filter smoothes the 

speckle noise at the homogeneous areas and vicinity 

of edges, but also it preserves the structural 

information such as edges between areas, curvilinear 

structures like roads, and point targets. 

The results obtained by the whole of the methods 

tested on SAR real images show that the filters 

Gauss-Gamma MAP and Laplace-Gamma MAP 

based on the wavelet transform  seem to give better 

results compared to the other filters recognized as 

powerful for the reduction of the multiplicative noise 

in the image radar.  Its two filters combine the two 

characteristics of a method of filtering with knowing 

the capacity of smoothing and preserving of the 

structures. It should be noted that the results obtained 

by using the algorithm of Mallat as a tool for 

decomposition in wavelet, are worse than those 

obtained with the “a trous” algorithm. 
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Figure.3: A zoom on structures on the image of Laghouat: a) 

Original image, b)Gauss-Gamma filter, c)  Beta-Gamma filter, 

d) Gamma-Gamma filter, e) modified   Gamma-Gamma filter, 

f) Gauss-Gamma (Haar), g) Daubechies_6, h) Daubechies_8, 

i)Spline_2, j) Daubechies_4 k) Laplace-Gamma filter (using à 

trous), l) Gauss-Gamma (using à trous). 
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