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ABSTRACT: Goal of the present work is to investigate and compare different compression methodologies
from the view-point of spectral distortion introduced in hyper-spectral pixel vectors. The main result of this
analysis is that, for a given compression ratio, near-lossless methods, either MAD- or PMAD-constrained, are
more suitable for preserving the spectral discrimination capability among pixel vectors, which is the principal
outcome of spectral information. Therefore, whenever a lossless compression is not practicable, the use of
near-lossless compression is recommended in such application where spectral quality is a crucial point.

1 INTRODUCTION

It is a widespread belief that the new generation of
space-borne imaging spectrometers (e.g. NASA/JPL
MODIS and ESA/EnviSat MERIS) will create several
problems, on one side for on-board compression and
transmission to ground stations, on the other side for
an efficient dissemination and utilization of the out-
come hyper-spectral data. In fact, the huge amount
of data due to moderate ground resolution, but ex-
tremely high spectral resolution (around 10nm), to-
gether with the high radiometric resolution (typically
12 bit word-length of the raw, i.e. uncalibrated, data
from the digital counter) originates an amount of data
of approximately 300 bytes/pixel. Therefore, the use
of advanced compression techniques and of suitable
analysis/processing procedures for dissemination to
users of thematic information is mandatory.

Data compression consists of a decorrelation,
aimed at generating a memoryless version of the cor-
related information source, followed by quantization,
which introduces a distortion to allow a reduction in
the information rate, and entropy coding. If the decor-
relation is achieved by means of an orthonormal trans-
formation, e.g. the discrete cosine transform (DCT),
or the discrete wavelet transform (DWT), the variance
of quantization errors in the transformed domain is
preserved when the data are transformed back into
the original domain. Thus, the mean squared error
(MSE) can be easily controlled through the step sizes
of quantizers. However, quantization errors in the

transformed domain, which are likely to be uniformly
distributed and upper bounded in modulus by half
of the step size, are propagated by the inverse trans-
formation and yield broad-tailed distributions, whose
maximum absolute amplitude cannot be generally set
a “priori”. Therefore lossy compression methods,
e.g. those proposed by the Joint Photographic Expert
Group, the current standard JPEG and the upcoming
standard JPEG 2000 (ISO 2000), are unable to control
the reconstruction error but in the MSE sense, which
means that, apart from the lossless case, relevant im-
age features may be locally distorted or corrupted by
an unpredictable and unquantifiable extent.
Compression algorithms are said to be fully re-
versible (lossless) when the data that are recon-
structed from the compressed bit stream are identical
to the original, or lossy otherwise. The difference in
performance expressed by the compression ratio (CR)
between lossy and lossless algorithms can be of one
order of magnitude without a significant visual degra-
dation. For this reason lossy algorithms are extremely
interesting and are used in all those application in
which a certain distortions may be tolerated. Actu-
ally these algorithms are more and more popular and
their use is becoming widespread also in such remote
sensing applications as those in which it was rightly
believed, so far, that the data had to exactly retain their
original values for further processing and quantitative
evaluations (Vaughn & Wilkinson 1995). This as-
pect is crucial for transmission from satellite to Earth
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receiving stations; in fact, once the data were lossy
compressed, they would not be available as they were
acquired for the user community. The distortions in-
troduced might influence such research activities as
modelling, classification and post-processing in gen-
eral. As a matter of fact, however, the intrinsic nois-
iness of sensors prevents from adopting strictly loss-
less techniques in order to obtain a considerable band-
width reduction (Roger & Arnold 1996, Aiazzi et al.
2001a). In this light, error-bounded near-lossless al-
gorithms (Chen & Ramabadran 1994, Aiazzi et al.
2001b) are growing in importance since they are ca-
pable to guarantee that at every pixel of the recon-
structed image the error is bounded and user-defined.

In the medical field objective measurements, like
MSE, maximum absolute distortion (MAD) and per-
centage MAD (PMAD) may be integrated with qual-
itative judgements of skilled experts, e.g. expressed
in terms of Receiver Operating Characteristic (ROC)
curves (Aiazzi et al. 1997b). In remote sensing appli-
cations, however, photoanalysis is not the only con-
cern. The data is often post-processed to extract in-
formation that may not be immediately available by
user inspection. In this perspective, if the MAD error
is constrained to be, e.g. one half of the standard devi-
ation of the background noise, assumed to be additive,
Gaussian, and independent of the signal, the decoded
image will be virtually lossless. This term indicates
not only visual indistinguishability from the original,
but also that possible outcomes of post-processing are
likely to be practically the same as if they were calcu-
lated from the original data. The price of compression
becomes a small and uniform increment in noisiness.

When higher compression ratios are demanded, a
PMAD-constrained approach may be rewarding in
terms of scientific quality preservation of the decom-
pressed data (Ryan & Arnold 1997). The rationale
is that automatic analysis and processing algorithms
may be more sensitive to relative errors on pixels,
than to absolute errors. For best performance, how-
ever, relative error-constrained compression requires
logarithmic quantization (Aiazzi et al. 2001b), which
is penalized with respect to linear quantization in the
Rate Distortion (RD) sense, with an MSE distortion
measure.

When multi-spectral or better hyper-spectral data
are being dealt with, spectral distortion becomes a
primary concern, besides spatial and radiometric dis-
tortions.  Spectral distortion is a measurement of
how a pixel vector (i.e. a vector having as many
components as spectral bands) changes because of
an irreversible compression of its components. A
widely used measurement is the angle between the
two vectors. More sophisticated measurements based
on information-theoretic criteria have recently proven

themselves more effective in discriminating spectral
classes (Chang 2000).

2 DISTORTION MEASURES
2.1 Radiometric Distortion

Let 0 < g(4,5) < gys denote an N-pixel digital im-
age and let g(i,j) be its possibly distorted version
achieved by compressing ¢(i,7) and decompressing
the outcome bit stream. Widely used distortion mea-
surements are the following:

Mean absolute error (MAE), or L; (norm),
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Root MSE (RMSE), or Ly,
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Maximum absolute distortion (MAD), or peak error,
or L,

Percentage maximum absolute distortion (PMAD)
9(i, )
Both in (4) and in (5) the MSE is incremented by
the variance of the integer roundoff error, to handle
the limit lossless case, when M SE = 0. Thus, SNR

and PSNR will be upper bounded by 10-log,,(12- ¢2)
and 10 - logy(12 - g7,), respectively.

PMAD = max
L

} x 100. (7)

When multi-band data are concerned, let v; =

a(i,7), I = 1,---, L denote the lth component of
the original multi-spectral pixel vector v and 7; 2
@iy g), 1 = 1,---, L its distorted version. Some of
the radiometric distortion measurements (1)-(7) may
be extended to vector data as: Average RMSE (A-
RMSE), or L(Ls) (the innermost norm Ly refers to
vector space ([), the outer one to pixel space (i, j)

1
ARMSE = V; le[m(z‘,j)fm(i,j)}?; ®)
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Peak RMSE (P-RMSE), or Loo(Ls),

PRMSE = max \/;[gxm)gl(ajn% o

I ACY)!
SNR = 10-log i T (10)
" Zi,j,z[gl(la]) = 9@, )P
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1 = - log — =7 9
O o 5) — i 512
Three-dimensional MAD (MAD?), or Ly, (L),
MAD® = max{Jgi(i.j) — au(i, j)|}; (12)
Three-dimensional PMAD (PMAD?)
PMAD? = max{w} % 100.(13)
i.ji 91(i, 5)

In practice, A-RMSE (8) and P-RMSE (9) are re-
spectively the average and maximum of the Euclidean
norm of the distortion vector. SNR (10) is the exten-
sion of (4) to the 3-D data cube. PSNR is the maxi-
mum SNR, given the full-scales of each vector com-
ponent. MAD (12) is the maximum over the pixel set
of the maximum absolute component of the distortion
vector. PMAD (13) is the maximum percentage error
over each vector component of the data cube.

2.2 Spectral Distortion

Given two spectral vectors v and v both having L
components, in which v. = {vy,vy,--+,v5} is the
original (hyper)spectral pixel vector v; = ¢(i,])
while ¥ = {#,%,---,0;} is the distorted vector
obtained after decompression, o, = §(i,j). Anal-
ogously to the radiometric distortion measurements,
the following spectral distortion measurement may be
defined.

The spectral angle mapper (SAM) denotes the ab-
solute value of the spectral angle between the pair of
vectors:

SAM(v,¥) 2 arccos<| Sk ) (14)

vz [[¥]]2
SAM can be measured in either degrees or radians.

Another measurement suitable for hyper-spectral
data (i.e. for data with large number of components)
is the spectral information divergence (SID) (Chang
2000) derived from information-theoretic Kullback-
Leibler distance:

SID(v,%) = D(v|[¥) + DF|v) (15)

with D(v||¥) being the Kullback-Leibler distance
(KLD), or entropic divergence, or discrimination, de-
fined as

D(v|[%) £ sz log ( ) (16)

in which
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In practice SID is equal to the symmetric KLD and
can be compactly written as

L
SID(v,v) = q log( )
; aQ

which turns out to be symmetric, as one can easily
verify. It can be proven as well that SID is always
non-negative, being zero iff. p; = ¢, Vi, ie. v =7,
and is not upper bounded. The measure unit of SID
depends on the base of the logarithm: nat/vector with
natural logarithms and bit/vector with logarithms in
base two.

Both SAM (14) and SID (18) may be either aver-
aged on pixel vectors, or the maximum may be taken
instead, as more representative of spectral quality.

(18)

3 NEAR-LOSSLESS COMPRESSION OF HYPER-
SPECTRAL DATA

Differential Pulse Code Modulation (DPCM) schemes,
either causal, like JPEG in lossless mode (Rao &
Hwang 1996) and JPEG-LS (Weinberger et al. 2000),
or non-causal (Aiazzi et al. 1997), are usually em-
ployed for error-free image compression. DPCM ba-
sically consists of a prediction followed by entropy
coding of the outcome prediction errors. Whenever
multi-spectral images are to be compressed, advan-
tage may be taken from the spectral correlation of the
data for designing a prediction that is both spatial and
spectral, from a causal neighborhood of pixels (Wang
et al. 1995, Roger & Cavenor 1996, Wu & Memon
2000). Causal means that only previously scanned
pixels on the current and previously encoded bands
may be utilized for predicting the current pixel value.
This strategy is as more effective as the data is more
spectrally correlated, as in the case of hyper-spectral
data (Aiazzi et al. 1999).

The simplest way to design a predictor, once a
causal neighborhood is set, is to take a linear com-
bination, or regression, of the values of such a neigh-
borhood, with coefficients optimized in order to yield
minimum mean square prediction error (MSPE) over
the whole image (Rao & Hwang 1996). In case of 3-
D images, the causal neighborhood may also contain
pixels belonging to the previously encoded bands, in
order to exploit inter-band correlation. Such a pre-
diction, however, is optimum only for stationary sig-
nals. To overcome this drawback, two variations have
been proposed: adaptive DPCM (ADPCM) (Rao &
Hwang 1996), in which the coefficients of predic-
tors are continuously recalculated from the incoming
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Figure 1. Flowchart of the classified 2-D/3-D DPCM encoder for near-lossless compression of remotely sensed optical data, based on a relaxation-

labelled prediction.

new data, and classified DPCM (Aiazzi et al. 2002b),
in which several classes are preliminarily recognized,
an optimized MMSE predictor is calculated for each
class, and such predictors are enabled to attain the
best space-varying prediction.

The DPCM encoder (Aiazzi et al. 2001b), shown
in Fig. 1, is of the latter type, being based on a classi-
fied linear-regression prediction followed by context-
based arithmetic coding (Aiazzi et al. 2002a) of the
outcome residuals. Image bands are partitioned into
blocks, typically 8 x 8, and an MMSE linear predic-
tor is calculated for each block. Given a preset num-
ber of classes, a clustering algorithm produces an ini-
tial guess of as many classified predictors to be fed to
an iterative labelling procedure which classifies pixel
blocks simultaneously refining the associated predic-
tors. All the predictors are transmitted along with the
label of each block. In order to achieve a near-lossless
compression, prediction errors are quantized with an
odd valued step size and then arranged into activity
classes, which are entropy coded by means of arith-
metic coding (Witten et al. 1987).

4 EXPERIMENTAL RESULTS

The data set includes a sequence of hyper-spectral
images collected in 1997 by the Airborne Visible In-
fraRed Imaging Spectrometer (AVIRIS), operated by
NASA/JPL, on the Cuprite Mine test site, in Nevada.
The sequence is constituted by 224 bands recorded at
different wave-lengths in the range 380 + 2500 nm,
with a average spectral separation between two bands
of 10 nm. The size of each image is 614 x 2048 pixels.
The raw sequence was acquired by the 12 bit analog-
to-digital converter (ADC) with which the sensor was
equipped in 1995, in place of the former 10-bit ADC.
The raw data from the digital counter have been ra-
diometrically calibrated by multiplying by a gain and
adding an offset (both varying with wave-lengths),
and are expressed as radiance values, rounded to in-
tegers, and packed in a 16-bit word-length, including
a sign bit. Thus, the full-scale is gy, = 32767 for
all bands. Band # 48 (808 nm) is shown in Fig. 2.
The second spectrometer, covering the near-infrared

Figure 2. Band # 48 (808 nm wavelength) of NASA/JPL AVIRIS
Cuprite Mine. The detail shown is 614 x 512 pixels with a word-length
of 16 bits.

(NIR) spectrum, was analyzed in a recent work by the
authors (Aiazzi et al. 2001a). It was found that the
noise affecting AVIRIS data is somewhat correlated
spectrally and along track, and less across track, due
to the “wisk-broom” scan mechanism, as well as to
post-processing. In this light, the claimed achieve-
ment of the theoretical compression limits, based on
a noise whiteness assumption (Roger & Arnold 1994,
Roger & Cavenor 1996), should be revised.

Bands 35 to 97 covering the NIR wave-lengths have
been compressed in both MAD-constrained mode
(linear quantisation) and PMAD constrained mode
(logarithmic quantisation). The work parameters of
the RLPE algorithm are non-crucial (Aiazzi et al.
2002b) and have been chosen so as to balance cod-
ing performances with encoding time.

The outcome bit-rates varying with band number,
together with the related distortion parameters are
shown in Fig. 3. As it appears the bit-rate plots fol-
low similar trends varying with the amount of distor-
tion, but quite different trends for the two types of
distortion (i.e. either MAD or PMAD). For example,
around the water vapour absorption wave-lengths (~
Band 80) the MAD-bounded plots exhibit pronounced
valleys, that can be explained because the intrinsic
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Figure 3. Bit-rates produced by 3-D RLPE on the data produced by
the second spectrometer (NIR) of AVIRIS Cuprite Mine "97: (a) linear
quantisation to yield user-defined MAD values; (b) logarithmic quan-
tisation to yield user-defined PMAD values.

SNR of the data gets lower; thus the linear quantizer
dramatically abates the noisy prediction errors. On
the other hand the PMAD-bounded encoder tends to
quantise the noisy residuals more finely when the sig-
nal is lower. Therefore bit-rate peaks are generated
instead of valleys. More generally speaking, bit-rate
peaks from the PMAD-bounded encoder are associ-
ated with low responses from the spectrometer. This
explains why the bit-rate plots of Fig. 3(b) never fall
below one bit per pixel per band.

Some of the rediometric distortion measures de-
fined in Subsect. 2.1 have been calculated on the
distorted hyper-spectral pixel vectors achieved by de-
compressing the bit-streams generated by the near-
lossless encoder, both MAD- and PMAD-bounded.

RMSE:s of the vector data, both average RMSE (8)
and peak, i.e. maximum, RMSE (9) are plotted in
Fig. 4(a) as a function of the bit-rate from the en-
coder. The MAD-bounded encoder obviously min-
imises both the radiometric distortions: average (A-
RMSE) and maximum (P-RMSE) Euclidean norm of
the pixel error vector. A further advantage is that A-
RMSE and P-RMSE are very close to each other for
all bit-rates. The PMAD-bounded encoder is some-
what poorer: A-RMSE is comparable with that of the
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Figure 4. Radiometric distortions versus bit-rate for compressed

AVIRIS Cuprite Mine *97 data: (a) RMSE; (b) MAD? (3-D MAD).

former, but P-RMSE is far larger, due to the high-
signal components that are coarsely quantised in or-
der to minimise PMAD. Trivially, the MAD of the
data cube (3-D MAD) (12) is exactly equal to the de-
sired value (see Fig. 3(a)), whereas the PMAD, being
unconstrained, is higher. Symmetric results, not re-
ported here, have been found by measuring PMAD on
MAD-bounded and PMAD-bounded decoded data.

As far as radiometric distortion is concerned, re-
sults are not surprising. Radiometric distortions mea-
sured on vectors are straightforwardly derived from
those measured on scalar pixel values. The introduc-
tion of such spectral measurements as SAM (14) and
SID (18) may encompass the rationale of distortion,
traditionally established in the signal/image process-
ing community.

Fig. 5 shows spectral distortion measures cal-
culated between original and decompressed hyper-
spectral pixel vectors. The PMAD-bounded algo-
rithm yields plots (maximum and average SAM in
Fig. 5(a)) that lie in the middle between the corre-
sponding ones produced by the MAD-bounded algo-
rithm and are very close to each other too. Since
the maximum SAM is a better clue of spectral qual-
ity of the decoded data than the average SAM may
be, a likely conclusion would be that PMAD-bounded
compression optimizes the spectral quality of the
data, while MAD-bounded is superior in terms of ra-
diometric quality.
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Figure 5. Spectral distortions versus bit-rate for compressed AVIRIS
Cuprite Mine *97 data: (a) spectral angle mapper (SAM); (b) spectral
information divergence (SID).

The considerations expressed for SAM are empha-
sized by the plots of Fig. 5(b) reporting average and
maximum SID. As it appears, the latter is capable of
discriminating spectral quality more finely than SAM
does, as previously noticed by Chan (2000) in the case
of multi-spectral classification.

5 CONCLUDING REMARKS

This paper has demonstrated the potential usefulness
of near-lossless compression, i.e. with bounded pixel
error, either absolute or relative. Unlike lossless
compression achieving typical CRs around two, near-
lossless compression can be adjusted to allow a virtu-
ally lossless compression with CR always larger than
five for hyper-spectral data. The main result of this
analysis is that, for a given CR, near-lossless meth-
ods, either MAD- or PMAD-constrained, are more
suitable for preserving the spectral discrimination ca-
pability among pixel vectors, which is the principal
outcome of spectral information. Therefore, when-
ever a lossless compression is not practicable, the use
of near-lossless compression is recommended in such
application where spectral quality is a crucial point.
Furthermore, since the maximum reconstruction er-
ror is defined by the user before compression, when-
ever higher CRs are required, the loss of performance
expected on application tasks can be accurately mod-
elled and predicted.
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