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ABSTRACT: This work addresses the possibility of retrieving soil moisture information from remotely

sensed data in the microwave domain and develops an algorithm to efficiently merge point measurements.

The inversion process is based on the Bayes’s theorem and applied to data of a radiometer and scatterometer

observing the same area. The flexibility of such algorithm allows incorporating as many as possible sources

of information, as multi-angle, multi-polarisation and multi-frequency data. An error analysis indicates that 

multi-polarisation information provides the best results. Advantages, disadvantages and future improvements

of this procedure are also discussed in the analysis. 

1 INTRODUCTION

Multi-sensor techniques are fundamental to the de-
velopment of operationally useful soil-moisture 
sensing systems in which the soil roughness effects 
in the microwave system response to soil moisture 
can be separated by multi-sensor analysis. The effect 
of soil roughness and/or vegetation can also be cor-
rected by acquiring data at different angles and fre-
quencies. In fact, inversion procedures (Satalino et
al. 1999) produce best results when multi-frequency, 
multi-angle and multi-polarisation data are available.  

The main objective of this work is to improve the 

estimation of soil moisture by combining data de-

rived from two types of sensor which satellites fre-

quently have on board: radiometers and scatterome-

ters.

The developed algorithm is based on an experi-

mental/modelling scheme 
The synergy of modeled and experimental data is 

justified by two important observations. An algo-
rithm based only on measurements could be of lim-
ited applicability as it represents a specific situation. 
On the other hand, when adopting simulated data, 
the inversion procedure might be of general purpose 
but sometimes not applicable to reality. 

This procedure intends to extract soil moisture 
starting from experimental data of different sensors 
and from the corresponding simulated data, using a 
Bayesian approach. In fact, the Bayesian methodol-
ogy earns much of its power from the ability to in-
corporate casual models as conditional probabilities. 

The response to electromagnetic radiation and the 
spontaneous emission of bare soils have been mod-
elled according to the Integral Equation Model and a 
semi-empirical expression corrected for roughness 
effect respectively.

The experimental data set was collected over long 
periods on agricultural fields and includes radiomet-
ric and scatterometric measurements in the angular 
range from 10° up to 70° as well as ground truth ac-
quisitions. The work is organised in five steps: 
1. Simulation of scattering and emission processes 

using the aforementioned models with soil pa-
rameters that meet the experimental environ-
ment; 

2. Analysis of multiple correlation among simu-
lated scattering, emission and soil moisture with 
noise added; 

3. Application of the Bayesian approach to retrieve 
soil moisture from scatterometer and radiometer 
data;

4. Comparison among the results obtained when 
the inversion procedure is applied to multi-
polarisation and multi-frequency data. 

5. Application to space-borne and air-borne data. 

In all the configurations, the estimated soil mois-
ture values show a reasonable agreement when com-
pared with in-situ measurements. Furthermore, the 
inversion procedure reaches better results when two 
different polarisations are adopted for backscattering 
coefficients and emissivity. 
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2 MICROWAVE SENSOR SENSITIVITY TO 
SURFACE PARAMETERS 

Active and passive sensors reveal same physical 
processes but produce different responses to surface 
parameters changes. The backscattering and emis-
sion from natural bare soils have been simulated by 
using theoretical models, to address if the combina-
tion of active and passive sensors could be useful in 
retrieving information about soil properties. In order 
to obtain the backscattering behavior in the case of 
active remote sensing, the Integral Equation Model 
(Fung 1994) has been implemented because works 
on a wider range of surface parameters. 

In the IEM formulation, the like polarised back-
scattering coefficients for surfaces with small or me-
dium size roughness are given by: 
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where k is the wave number, θ is the incidence an-

gle, kz = kcosθ, kx = ksenθ and pp refers to the hori-

zontal (HH) or vertical (VV) polarisation state and s

is the standard deviation of terrain heights. The term 
n

ppI depends on k, s and on RH, RV, the Fresnel reflec-

tion coefficients in horizontal and vertical polarisa-

tions. The symbol W (-2kx,0) is the Fourier transform 

of the n
th

 power of the surface correlation coeffi-

cient. In this context, an exponential correlation 

function has been adopted that seems to describe 

better the properties of natural surfaces (Fung 1994). 
When the radiometer response is analysed, the 

simplest soil-emission configuration is represented 
by a homogeneous isothermal soil medium with a 
plain air-soil boundary. In this case, the brightness 
temperature of the soil surface when viewed from air 
at a nadir angle θ0 is: 

s0
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where Ts is the soil temperature and e
sp

(θ0, p) is the 

soil emissivity evaluated at θ0 with polarization p.

For the evaluation of emissivity, a semi-empirical 

expression proposed by Wang (1995) including the 

effect of roughness, has been introduced: 
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where rH and rV are the smooth surface reflectivities 
for the horizontal and vertical polarisation. Q is a 
mixing polarization parameter depending on the op-
erating frequency and s.

For the IEM, the input parameters are the real 
part of the dielectric constant ε, the rms of height, s,
and the correlation length, l, and for the emissivity, 
ε, s.

The backscattering coefficients and the emissivity 
have been simulated for the following ranges: 

1. The standard deviation of height s from 0.5 cm 
up to 1.5 cm; 

2. The correlation length l from 2 cm up to 5 cm; 
3. The dielectric constant ε from 4 up to 20 corre-

sponding to volumetric soil moisture values 
from 6% to 40% for a silty-loam soil. 

The dielectric constant is obtained from the 
knowledge of volumetric soil moisture, soil texture 
and frequency according to empirical formulae (Hal-
likainen et al. 1985). The range of simulated values 
corresponds to measured value ranges. 

The backscattering coefficients have been simu-

lated for a frequency of 4.6 GHz, with both polarisa-

tions HH and VV, and the emissivity for 3.1 GHz 

and 4.6 GHz with linear polarisation H and V. 
In the case of backscattering coefficients, the rms 

of heights, s, has a heavier impact than the correla-
tion length, l, on backscattering coefficients for both 
polarisations, with a saturation effect at higher val-
ues of s. The range of σ0

 for l varying from 2 cm up 
to 5 cm is less that 1 dB, and it increases for higher 
values of the incidence angles, e.g. for 60° it is about 
2.5 dB. 

The effect of roughness is to increase the emissiv-
ity, but to diminish the dependence of emissivity on 
the dielectric constant (Ulaby et al. 1994). These 
considerations apply for both polarisations. 

For 3.1 GHz, the emissivity behavior is quite 
similar. These few considerations and a more com-
plete analysis indicate that, theoretically, a net de-
pendence of backscattering coefficients and emissiv-
ity on soil moisture and roughness exists (Du et al.
2000, Fung 1994). 

In the case of real data, this dependence is not al-
ways evident due to many sources of errors. This re-
flects in low correlation factors between measured 
radar data and surface parameters. Three correlation 
factors have been considered: the first one indicating 
the correlation between the dielectric constant and 
the backscattering coefficient, the second one indi-
cating the correlation between the dielectric constant 
and the emissivity and the third one is a correlation 
factor of a multiple regression among backscattering 
coefficients, emissivity and the dielectric constant. 
Taking into account different soil parameters con-
figurations, random noise has been added in order to 
produce lower single correlation factors and investi-
gate what happens to the multiple regressions when 
the dielectric constant is considered as a function of 
backscattering coefficients and emissivity. Even 
when the single factors steep down, the multiple cor-
relation factors do not drop. The lower limit is gen-
erally 60%, indicating that a combination of both 
sensors could provide better performance in extract-
ing surface moisture even when single sensor data 
reveal a poor correlation (Saatchi et al. 1994). 
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3 THE EXPERIMENTAL DATA SET 

The experimental data set was acquired by the Uni-
versity of Berne's RASAM, a truck-mounted radi-
ometer-scatterometer operating between 2.5 GHz 
and 11.0 GHz in the angular range from 10° to 70° 
(Wegmueller et al. 1994). This data set includes 
backscattering coefficient measurements at HH, VV, 
HV, VH polarisations and emissivity at H, V polari-
sations for a great variety of agricultural fields. 

Only bare soils are selected in this analysis, 
which, according to measurements, are within the 
limits imposed by the IEM model. The experimental 
accuracy, as indicated in the data set, is around 1 dB 
for backscattering coefficients and 1-2 K for bright-
ness temperatures. 

In the first approach as illustrated in section 4, the 
backscattering coefficients and the emissivity have 
been considered at the same frequency of 4.6 GHz 
and for horizontal polarisation. In this case, the 
wavelength is 6.52 cm with a penetration depth of 
less than 2 cm (Ulaby at al. 1994), so the microwave 
sensor is sensible only to near surface properties. 
Consequently, no volumetric effects should be taken 
into account. 

4 INVERSION PROCEDURE 

Some remote sensing analysis fall within the cate-
gory of inverse problem where from a vector of 
measured values, m, one wishes to infer the set of 
ground parameters, x, that gave rise to them. 

The inverse problem is a typical ill-posed prob-
lem. It presents many difficulties due to the non-
linearity between remote sensing measurements and 
ground parameters and generally because more than 
one value of x could produce the same measured m
(Satalino at al. 1999). 

In the second section, two models that associate 
an approximate value of the backscattering coeffi-
cient, σ0

, and emissivity, e, to values of the dielectric 
constant ε and roughness parameters, s and l, have 
been introduced and now one would like to make an 
estimate of the surface parameters that gave rise to 
the observed values of σ0

 and e. In this approach, the 
backscattering coefficient and emissivity for hori-
zontal polarisation are considered. The attention is 
focused on the estimation of the dielectric constant, 
because even though the standard deviation of 
height, s, and the correlation length, l, play a key 
role in electromagnetic scattering, they are very hard 
to quantify experimentally, showing a great variabil-
ity (Mattia et al. 1994). Regarding the parameter s,
the integration will be performed over a range that 
covers most of measurements. The correlation length 
will be considered as a parameter to be varied in the 
model.

Instead of deterministically inverting the theoreti-
cal formulae (1, 2), the inversion procedure is based 
on a Bayesian methodology (Haddad et al. 1994, 
Davis et al. 1995). Starting from a data set consist-
ing of soil parameter measurements and the corre-
sponding remote sensing data σ0

HH and eH, it aims at 
quantifying the spread of measurements about the 
theoretical formulae, then incorporate this informa-
tion into the inversion algorithm. With this strategy, 
the spread of actual data about the approximate 
model is built, then this information is utilised to ex-
tract the model accuracy. The approach has been 
used to combine data from two different sensors but 
can be extended to include as many as available data 
simultaneously. 

The problem can be detailed in the following 
way: starting from two measured values of σ0

HH and 
eH for 4.6 GHz on the same area, one would like to 
make an estimate of the dielectric constant that has 
produced the observed couple (σ0

HH, eH).

As the equality between theoretical and experi-

mental values is never verified due to many factors 

that include measurements errors, the non-

uniformity of the background power distribution, the 

inhomogeneity of the surface within resolution cells, 

one needs to make an effort to statistically account 

for this discrepancy.
Two random variables, R1 and R2, representing 

noisy elements in the theoretical formulae, are intro-
duced.  They do not depend on ε, s and l:

Hth1Hm eRe =  , HHth2HHm
0 R σσ =   .                         (4) 

To compute the conditional density function,  
P (ε, s| eH,σ0

HH) to obtain ε and s given the meas-
ured values of eH,, σ0

HH, the joint behavior of R1 and 
R2 has to be identified. In fact, applying the Bayes's 
theorem, this conditional density function will be as 
follows: 
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where Pprior (ε, s) is the prior joint density function 
for the dielectric constant and the s parameter, in 
which one includes all the prior information about 
these parameters, such as estimates based on other 
instruments. In case one does not know anything "a 
priori" about them, except their physical range of 
values, a uniform density function is considered di-
vided by the length of the corresponding interval. 
The term P(eH, σ0

HH) is a normalisation factor. The 
posterior density function Ppost(eH, σ0

HH| ε, s) is to be 
computed based on measured values. 

This function Ppost (eH, σ0
HH| ε, s) can be ex-

pressed in terms of the probability density P (R1, R2)
(Stuart et al. 1996): 
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To determine the joint density function, P (R1,

R2), the ratios HthHm1 e/eR =  and 

HHth
0

HHm
0

2 /R σσ=  are computed using the 

RASAM data set and the corresponding simulated 

values.
Their frequency distributions illustrate that an 

asymmetric distribution function should be needed 
to represent the data. It is well known that the family 
of gamma density functions is a suitable solution for 
the representation of statistical properties of a natu-
ral scene. However, a Gaussian probability density 
function has been preferred, being also commonly 
used to describe natural scenes and more convenient 
as mathematical approach (Nezry et al. 1998). 

In this case, the joint distribution function can be 
written as: 
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The hypothesis underlying the use of this expres-
sion is that R1 and R2 are independent gaussian-
distributed random variables. In fact, R1 and R2 rep-
resent the noise element in measurements obtained 
from different sensors, sensible to different soil 
processes. Now this procedure is applied to the case 
where the models are those analysed in the section 2 
and the data sets are those acquired by the RASAM 
scatterometer and radiometer at 4.6 GHz for emis-
sivity and backscattering coefficients with the angu-
lar range from 0° up to 60°. 

R1 and R2 are both gaussian-distributed random 
variables, where the means µ1, µ2, and the standard 
deviations σ1, σ2 can be determined from the joint 
knowledge of R1 and R2. The principle of the Maxi-
mum Likelihood (MAP) is applied, so that the pa-
rameters µ1, µ2, σ1, σ2 are those that maximize the 
joint distribution function. The values, at which the 
maximum is achieved, are the following: µ1=0.96,
µ2=1.14, σ1=0.04, σ2=0.25. Subsequently, the joint 
density function can be tested for goodness-of-fit, by 
integrating equation (7) directly. The obtained χ2

value is well within the acceptable region and it is 
reasonable to assume that the expression (7) is in-
deed the joint density function for R1 and R2 in the 
case of our data. 

Once determined the joint density function, given 

specific values for eH, σ0
HH, the optimal estimator ε

for ε, that has minimum variance (e.g. that 

minimises the r.m.s error), is the conditional mean: 
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The corresponding variance is given by: 
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The r.m.s error is derived as the square root of the 
variance. The prior density function Pprior(ε, s) will 
be assumed uniform over the range 4 < ε < 20 and 
0.5cm < s < 1.2cm. The integrals are computed nu-
merically using the Matlab environment (v.5.3). 

This inversion procedure is now applied to sepa-
rate data to verify its reliability. The estimates on ε
have been obtained for incidence angle of 20° and 
30° (table 1). The choice of these incidence angles is 
due to two main reasons: they are the typical angles 
employed by space-borne sensors as ERS-1 and 2 
and ENVISAT. Furthermore, it should be noted that 
as the incidence angle increases, the effect of rough-
ness becomes stronger. (Ulaby et al. 1994). 

For both incidence angles, the values of the di-
electric constant predicted by the algorithm fall 
within the 20% of the measured values. The average 
error is 3.52 for values at 20° and 3.54 for those at 
30°, with a percentage error of 30%. Thus, even if 
the wet-dry trend is respected, the error bars are still 
large and this prevents from a finer distinction 
among different soil moisture conditions. 

In order to reduce the variance on estimates, it is 
possible to make iterative estimates thus reducing 
the integration window for ε.

Table 1. Comparison between measured and predicted values 
of the dielectric constant 

Place εεεε meas. εεεε estim. 

20° 

εεεε estim.  

30° 

Marfeld.1 8.78 8.92 11.19 

Marfeld.2 14.83 16.09 15.27 

Niedir.1 13.51 14.05 16.36 

Niedir.2 10.46 9.94 11.67 

Suberg1 6.71 8.75 7.46 

Suberg2 11.32 12.93 14.36 

Suberg3 11.32 9.81 10.59 

Suberg4 10.04 8.61 7.87 

Suberg5 18.99 15.33 15.35 

Suberg6 10.46 15.01 12.94 

Beulach1 7.12 11.67 12.60 

Beulach2 8.77 10.10 11.79 

Suberg7 15.30 17.31 16.20 

Suberg8 15.75 17.43 16.24 

The new integration window will be centred on 
the previous estimated value with a width equal to 
the error (Haddad et al. 1994). This method is 
equivalent to update the prior density function and to 
apply the algorithm repeatedly. The procedure is re-
iterated until the error on estimates scales down to 
less than 10%. The results after the fourth run are 
reported in table 2. After the fourth run, all estimated 
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values have a percentage error lower than 10%. The 
error for the experimental measurements is around 
10%. As one can deduce from tables 1 and 2, the es-
timated values obtained after four runs are worse 
than those obtained after the first. However, after the 
first run, the error on estimates was so high that the 
estimates cannot be considered reliable.  

Till now, the inversion algorithm has been ap-
plied to extract soil moisture information starting 
from radar measurements of backscattering coeffi-
cients, σ0

HH, and emissivity, eH  (indicated as 1f). 
Theoretically, it can be applied to a wider variety of 
situations, providing: 
1. The knowledge of theoretical models able to de-

scribe the interactions between the electromag-
netic radiation and natural surfaces; 

2. A reliable and complete data set of radar and 
ground truth measurements; 

3. Some prior information would be particular use-
ful in order to reduce the uncertainty on esti-
mates. 

4. As the process is divided in a training and test 
phase, the availability of an exhaustive experi-
mental data set is necessary in order to cover 
many situations and make the inversion process 
more robust. 

As a further application of the algorithm, the proce-
dure has been extended to the case where multi-
frequency and multi-polarisation data are available. 

Table 2. Comparison between measured and predicted values 
of the dielectric constant after the 4th run 

Place εεεε meas. εεεε estim. 

4
th

 run 

error

4
th

 run 

Marfeld.1 8.78 7.90 0.68 

Marfeld.2 14.83 16.72 1.66 

Niedir.1 13.51 14.10 0.91 

Niedir.2 10.46 9.72 0.68 

Suberg1 6.71 7.56 0.68 

Suberg2 11.32 12.69 0.75 

Suberg3 11.32 9.81 1.14 

Suberg4 10.04 7.76 0.66 

Suberg5 18.99 16.19 1.14 

Suberg6 10.46 13.77 1.41 

Beulach1 7.12 9.73 0.72 

Beulach2 8.77 9.50 1.06 

Suberg7 15.30 17.73 1.42 

Suberg8 15.75 17.10 1.01 

Of course, the crucial point is the determination of 
the posterior density function and consequently of 
the joint density function. The following formulation 
can be considered a generalisation of equation (7): 

∏
=

=
n

0i

iin21 )R(P)R,...,R,R(P   ,         (10)  

where Pi (Ri) is the probability density function of a 
single source and the expression (10) is valid as long 
as all the sources are reasonably independent.  The 
algorithm is now applied to the following cases: 
1. Backscattering coefficients for HH polarisation 

at 4.6 GHz, emissivity for H polarisation at 3.1 
GHz and 4.6 GHz (indicated as 2f); 

2. Backscattering coefficients for HH and VV po-
larisations at 4.6 GHz, emissivity for H and V 
polarizations at 4.6 GHz (indicated as HV). 
The estimation of the gaussian parameters leads 

to: µ= 0.97 and σ= 0.05 for eH  at 3.1 GHz, µ= 0.99 
and σ= 0.03 for eV at 4.6 GHz and µ = 1.02 and σ=
0.15 for σ0

VV at 4.6 GHz. 
The data in the training and test phase are the 

same considered in the previous attempt, adding data 
for 3.1 Ghz and for VV polarisation.

In tables 3, the estimates in these configurations 
after a single run are listed. Table 4 reports the in-
version error in each case. The configuration, where 
the two polarisations are employed, provides, al-
ready after the first run, an error lower than the other 
configurations.

It should be noted that using also the 3.1 GHz 
data, no improvements are obtained. This is due to 
the fact that between 4.6 GHz and 3.1 Ghz there is 
not a great difference in terrain response. In this 
case, the L-band, 1.4 Ghz is indicated as the best 
suited for its radiometric sensitivity (Du et al. 2000). 

Table 3. Comparison between measured and predicted values 
of the dielectric constant for different sensor configurations 

Place εεεε
meas.

εεεε estim. 

2 f  

εεεε estim. 

HV

Marfeld.1 8.78 8.57 6.63 

Marfeld.2 14.83 15.93 18.28 

Niedir.1 13.51 15.0 17.39 

Niedir.2 10.46 10.55 10.20 

Suberg1 6.71 8.50 6.53 

Suberg2 11.32 12.54 11.30 

Suberg3 11.32 9.56 8.34 

Suberg4 10.04 8.45 7.59 

Suberg5 18.99 17.56 18.95 

Suberg6 10.46 14.47 15.44 

Beulach1 7.12 11.47 7.74 

Beulach2 8.77 9.96 6.91 

Suberg7 15.30 17.33 18.74 

Suberg8 15.75 18.44 19.02 
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Table 4. Comparison among inversion errors on the estimated 
values of the dielectric constant for the different sensor con-
figurations. 

Place error 

estim. 1f 

error

estim. 2 f  

error

estim. HV 

Marfeld.1 3.86 3.76 2.21 

Marfeld.2 3.05 3.03 1.52 

Niedir.1 3.26 2.91 1.81 

Niedir.2 3.5 3.19 1.77 

Suberg1 3.81 3.75 2.2 

Suberg2 4.03 4.07 3.48 

Suberg3 4.12 4.12 3.39 

Suberg4 3.78 3.77 2.96 

Suberg5 3.62 2.07 0.98 

Suberg6 3.47 3.67 2.67 

Beulach1 4.17 4.24 3.07 

Beulach2 4.15 4.16 2.08 

Suberg7 2.27 2.21 1.1 

Suberg8 2.2 1.43 1.3 

The problem of applying this algorithm to space-
borne and air-borne data lies in the difficulty of hav-
ing contemporary acquisitions on the same area.  

The results of our preliminary attempt are listed 
in table 5. The first three lines refer to data of an air-
borne radiometer (IROE) operating at 6.8 GHz and 
of RADARSAT working in the C-band (5.3 GHz), 
both in horizontal polarisation, at 20°, while the last 
three ones to the same radiometer in combination 
with ERS-2 radar acquisitions (VV polarisation, at 
23°). The second and third column report results af-
ter the first and third processing run respectively. 
The main drawback of these data is that sensor ac-
quisitions and ground truth measurements have been 
carried out within a period of 10 days.

5 ERROR ANALYSIS

The analysis developed in this work indicates that 
the combination of active and passive microwave 
sensors could be suitable for soil moisture extrac-
tion, helping to resolve radar measurements ambigu-
ity due to roughness effect, provided that error 
sources in processed data are understood and quanti-
fied. Figure 1 reports in a contour plot the variation 
of measured dielectric constant in correspondence of 
emissivity and backscattering coefficient values.  

There is not a net dependence of dielectric con-
stant on backscattering coefficients and emissivity, 
and different values of backscattering coefficients 
and emissivity correspond to the same value of di-
electric constant. Particularly, there are two contours 
for ε = 8 and ε = 10, that probably create ambiguity 
in the inversion procedure. This may be due to 
measurements errors, both in the radar response and 
the estimation of surface parameters, and to the in-
fluence of roughness. 

Table 5. Comparison between measured and predicted values 
of the dielectric constant using airborne and space-borne data 

Field εεεε meas. εεεε estim. 

1
st

 run 

εεεε estim. 

3
rd

 run 

304 (14/5) 6.76 10.13 7.38 

501 5.86 5.75 5.42 

121 (14/5) 9.91 10.43 8.89 

304 (8/5) 9.16 10.10 7.98 

121 (8/5) 5.85 9.07 6.42 

102 3.92 10.23 7.26 

The contour plot of the estimated dielectric con-
stant (fig.2) does not exactly reproduce that of the 
measured ones and above all the higher value of di-
electric constant are not present. 

Admittedly, the algorithm is able to make a rough 
distinction between wet and dry conditions, but in 
the first run its estimates have a high variance. The 
iterative process is necessary to lower the variance, 
with a little worsening on the dielectric constant es-
timates (fig.3). 

The advantage of introducing other information as 

other polarisations is immediately evident. If the 

measured values of dielectric constant are plotted 

against emissivity and backscattering coefficients in 

the vertical polarisation, the graph shows a trend that 

helps the inversion process and produces low errors 

on estimates (fig. 4). In fact, the average error is al-

ready 2.10 at the first run (table 4). 
Furthermore, in this case the higher values of di-

electric constant are also satisfactorily estimated 
(fig. 5).

Figure 1. Contour plot mapping the values of the dielectric 
constant against those of emissivity and backscattering coeffi-
cients
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Figure 2. Contour plot mapping the estimated values of the di-
electric constant for 20° after the first run. 

Figure 3. Contour plot mapping the estimated values of the di-
electric constant for 20° after the fourth run. 

Figure  4. Contour plot mapping the measured values of the di-
electric constant in the case of the vertical polarization. 

Figure 5. Contour plot mapping the estimated values for 20° 
using data vertical polarization. 

6 CONCLUSIONS AND FURTHER 
DEVELOPMENTS 

This work has analysed and developed an inversion 
algorithm aiming at estimating soil moisture from 
remotely sensed data. The procedure is based on a 
Bayesian approach, including noisy elements in the 
posterior probability density function.

It could be further improved eliminating its built-

in limitation: 

- The correlation length is not taken into ac-

count;

- It has been applied to data of ground-based in-

struments. 
For the first item, the posterior density function 

can be written with dependence on all surface pa-
rameters as ε, s and l (Tanner  1996): 

)D,...,D,D(P

)l,s,|D,...,D,D(P)l,s(P)(P

)D,...,D,D|l,s,(P

n21

n21postpriorprior

n21

εε
ε =

,    (11) 

where D1, D2,..., Dn are the data deriving from dif-
ferent sensors and/or different sensor configurations, 
and in the prior density function the dependence on 
soil moisture and roughness parameters has been 
split. A posterior distribution for only ε can be ob-
tained as follows: 

)D,...,D,D(P

dsdl)s,|D,...,D,D(P)l,s(P)(P

)D,...,D,D|(P

n21

l,s

n21postpriorprior

n21 =

εε

ε

  (12) 

This integral can be computed if prior informa-
tion on s and l, are available (Davidson et al. 2001}. 
To have reliable estimates of Pprior(s, l), large data 
sets of profile roughness measurements are needed. 
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The training and test phases of the algorithm have 

been performed on data derived from ground-based 

instruments. These data offer the major advantage 

that a great variety of radar and ground truth meas-

urements are available. Moreover, the flexibility of 

an instrument, like the scatterometer, allows design-

ing and carrying out experiments that fit special re-

quirements. However, the testing of the algorithm to 

a variety of data from airborne and space-borne sys-

tems is an envisaged application. 
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