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ABSTRACT: Derivative analysis is one of the techniques that is suitable for the analysis of high spectral
resolution data such as that derived from airborne hyperspectral sensors and field spectrometers. The use of
derivative analysis provides several advantages that facilitate the extraction of information from the data. 
However, the derivatives of a reflectance spectrum are significantly noisier than the original spectral reflec-
tance curve. The advantages of derivatives are therefore offset by the introduction of such noise. A number of
methods for de-noising signals have been used in the past. Our method is based on the use of wavelets. In this
paper, a technique of de-noising spectra using the discrete wavelet transform is described. The de-noised de-
rivative spectra are then used in a template-matching scheme, with image endmembers providing the tem-
plates. The result is an initial ‘hard’ classification of part of the study area in Central Spain using DAIS 7915
airborne hyperspectral data. 

1 INTRODUCTION

Before the emergence of hyperspectral technology, 
remote sensing imaging systems were limited to 
multispectral devices, collecting data in only a few 
wavebands. The spectral and spatial analysis meth-
ods developed for this kind of data were based on 
multivariate statistics. With the availability of hyper-
spectral data, methods used to analyse multispectral 
data have been applied to hyperspectral data. How-
ever, this approach is generally considered to be in-
appropriate, as the multispectral analysis methods 
generally consider the individual spectral bands to 
be independent variables. This is not a suitable ap-
proach to the analysis of spectrally continuous hy-
perspectral data (Tsai and Philpot 1998). The tradi-
tional multispectral data analysis techniques cannot 
simply be extended to the hyperspectral case; more 
complex and specialised techniques are required.  

Derivative analysis is a technique used in analyti-
cal chemistry that can reduce the effects of un-
wanted background interference (Fell and Smith 
1982). It is also useful in extracting subtle informa-
tion that might be obscured in the original data (Tsai 
and Philpot 2002), such as reducing the effects of 
differing illumination conditions (Gong et al. 1997). 
Hyperspectral remote sensing data analysis can 
benefit from the use of derivative analysis. However, 
this technique is characterised by its high sensitivity 
to noise in the original spectra (Galvão et al. 2001).  

Thus, smoothing or de-noising the raw spectra is of-
ten a necessary step before applying any derivative 
operation (Bruce and Li 2001). Several methods 
have been applied in smoothing noisy signals, in-
cluding the Fourier transform, Savitzky-Golay, Ka-
wata-Minami, mean filter, Gaussian function, and so 
on. However, these methods have several drawbacks 
that could reduce the effectiveness in dealing with 
noisy signals. Recently, a new method known as the 
wavelet transform has been introduced to the scien-
tific community. It offers a much more efficient ap-
proach to signal processing. Among the major ad-
vantages of the wavelet-based de-noising method is 
that it can be used to reduce the level of noise while 
preserving the significant features of the original 
data (Depczynski et al. 1999). Barclay et al. (1997) 
compared the performance of discrete wavelet trans-
form smoothing and de-noising methods with 
Savitzky-Golay smoothing and Fourier transform fil-
tering methods and concluded that the wavelet-based 
methods are superior to the other methods.  

In this paper, the use of wavelet-based de-noising 
technique is explored and applied to derivative tem-
plate matching of airborne hyperspectral remote 
sensing data. We present the preliminary results of 
our research on the development of a methodology 
for mapping land cover based on local high spatial 
and spectral resolution data and the evaluation of the 
combination of wavelet-based de-noising and de-
rivative analysis techniques in hyperspectral data 
analysis. 
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2 STUDY AREA AND DATA 

2.1 Study area 

The study area for this research is located within the 
area of ‘La Mancha Alta’ in central Spain. The wet-
land area of La Mancha Alta is regarded as one of 
the most important areas for migrating and wintering 
waterfowl in Spain (Oliver and Florín 1995). The 
semi-arid environment of La Mancha makes it sus-
ceptible to land degradation processes. The region, 
which was once famous for various types of wet-
lands, is now left with many destroyed wetlands due 
to drainage, over-pumping, and water-table decline 
(Grove and Rackham 2001). The exploitation of wa-
ter resources has contributed to losses of wetland. 
Oliver and Florín (1995) report that 62.5% of La 
Mancha wetland areas are in the process of disap-
pearing or have already disappeared, with only 2.8% 
of the wetland areas in a well-preserved state. 

2.2 DAIS 7915 airborne hyperspectral data 

The hyperspectral data used in this study was col-
lected by the Digital Airborne Imaging Spectrometer 
(DAIS) 7915 airborne hyperspectral sensor. This in-
strument uses four spectrometers to measure radiant 
and emitted energy in 79 wavebands in the range 0.4 
– 12.6 µm. The German Aerospace Centre (DLR) 
carried out the data acquisition plus radiometric, at-
mospheric, and geometric correction. The spatial 
resolution of the geometrically corrected image is 5 
m. A DAIS overflight of the study area was con-
ducted in June 2000, at the behest of the Autono-
mous University of Madrid.

3 METHODOLOGY

3.1 Derivative analysis 

Derivative analysis has been applied to hyperspec-
tral data analysis, and has been shown to yield prom-
ising results (Tsai and Philpot 1998). Derivative 
analysis is able to deal with the problems of quanti-
tative remote sensing analysis in an efficient and 
elegant way (Demetriades-Shah et al. 1990). How-
ever, remote sensing data (particularly aircraft data) 
are acquired under uncontrolled conditions, such as 
changing viewing and illumination geometry, at-
mospheric effects, and spatial resolution factors that 
will result in degradation of the data due to addition 
of high frequency noise (Bruce and Li 2001). This 
situation complicates the use of derivative, as the 
technique is highly sensitive to noise in the data.

The first derivative measures the slope of the 
spectral reflectance curve at a given point. If the 
wavelength is denoted by x and the magnitude of 
spectral reflectance by y, then the derivative at any 

point on the curve between xmin and xmax is written as 
dy/dx. The simplest way to calculate the derivative 
for discrete (digital) data is to use the method of dif-
ferences:
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Higher-order derivatives are obtained by repeat-
ing the process on the derivative of the immediately 
lower order. However, due to the increasing sensitiv-
ity of derivatives to noise and other small random 
variations in the data as the derivative order in-
creases, it is generally accepted that lower order de-
rivatives are more suitable for operational remote 
sensing applications (Cloutis 1996). As the advan-
tages of the use of derivatives are offset by the in-
troduction of significant noise in the derivative spec-
trum, it is necessary to reduce the noise in the 
original signal before the derivative is calculated. 

3.2 Wavelet-based de-noising 

Electronic signals are affected by noise of some 
form, thus, before any useful analysis can be per-
formed, it is preferred that the noise is suppressed in 
order not to interfere with the information content. 
Noise can originate from various sources such as in-
strumental instability, data acquisition processes, in-
terfering natural phenomena, and so on. Thus, 
smoothing or de-noising is normally a necessary pre-
processing step before any subsequent analysis util-
ising the signals is performed. This process can 
greatly help direct human interpretation and enhance 
subsequent computer-based analysis.  

Various methods of signal de-noising have been 
used prior to derivative calculation. One of the most 
popular methods is the Savitzky-Golay procedure, 
which is used by Demetriades-Shah et al. (1990). 
The significant advantage of wavelet-based de-
noising compared to other smoothing (low pass fil-
ter) methods such as Savitzky-Golay, for instance, is 
that wavelet-based de-noising explicitly estimates 
the noise variance, and differentiates between noise 
and signal effectively. The signal observed by the 
DAIS sensor could be regarded as the convolution of 
true signal, instrumental, electronic, and other 
sources of noise as well as the noise resulted from 
the spacing of data points, as shown in equation 2. 
Since the use of wavelets permits the estimation of 
the noise resulting from these sources, noise reduc-
tion using wavelets should be effective. 

SignalObs
= SignalTrue

+ Noise .Inst + NoiseSpacing    (2) 
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Another major difference between smoothing and 
de-noising is that smoothing methods remove only 
the high frequencies, whereas de-noising removes 
noise regardless of the frequency (Taswell 2000). 
This property allows wavelet-based de-noising to re-
tain the significant information in the original signal 
while removing the noise. 

Noise reduction is one of the many applications 
of wavelet analysis. Wavelet analysis is also a popu-
lar tool in performing data compression and fast 
computation (Bruce et al. 1996). Wavelet analysis 
can provide new information and faster performance 
in many scientific fields that traditionally rely on 
Fourier techniques. For more complicated signals of 
the non-stationary type, the use of Fourier transform 
is not applicable. The wavelet transform is suitable 
due to the fact that it is well adapted to non-
stationary signals, such as those generally encoun-
tered in remote sensing (Ranchin and Wald 1993).  

We are particularly interested in the application 
of wavelet-based de-noising method. Our de-noising 
method is based on the use of the discrete wavelet 
transform (DWT). DWT de-noising consists of three 
major steps: transformation of the noisy signal to the 
wavelet domain, thresholding the wavelet coeffi-
cients, and the inverse transform of the de-noised 
wavelet coefficients back to the original signal do-
main. The second step is highly critical and involves 
several tasks, such as the selection of the wavelet 
type, threshold definition, and the application of the 
suitable thresholding methods. Thresholding, which 
is an integral part in the second step, is a way of 
suppressing those wavelet coefficients that are be-
low a particular threshold value. Noise is associated 
with these small coefficients, and thus no important 
information is lost. The de-noised signal is con-
structed from the remaining wavelet coefficients.  

However, care should always be taken not to 
over-smooth the data as this can result in the altera-
tion of the original and important spectral features in 
the data. Thus, it is always important to maintain a 
balance between de-noising and the preservation of 
the integrity of the information content of the signal.  

3.3 Template matching 

Template matching is a method of pattern recogni-
tion (Jain et al. 2000). Pattern recognition aims at 
performing supervised or unsupervised classifica-
tion, which is an important issue in remote sensing. 
Template matching involves the determination of the 
resemblance of two types of entities, which can be 
represented in terms of points, curves or shapes. 
Template matching, which is conceptually and op-
erationally simpler than the technique of linear spec-
tral unmixing, can also be used to estimate endmem-
ber proportions. It is essentially the same as ‘cosine 
theta analysis’. The cosine theta measure of resem-
blance expresses the similarity between a reference 

spectrum and a target spectrum by calculating the 
angle between vectors representing the two spectra 
(Kruse et al. 1993). The availability of high spectral 
detail offered by hyperspectral data permits the use 
of spectral matching techniques for information ex-
traction and classification (Schwarz and Staenz 
2001).

The methodology for the wavelet-based de-noised 
derivative template matching of hyperspectral image 
data is as in figure 1.

Figure 1. Processing flow of the methodology. 

The first step in the methodology is to select a 
suitable set of bands that are continuous but which 
exclude the high noisy bands. DAIS reflectance data 
shows slight to severe striping effects from bands 41 
to 47 and also from bands 57 to 72. The prominent 
effects of periodic noise in the longer wavelength 
bands of the image could also be due to the instru-
ment’s scanning mechanism that is highly suscepti-
ble to striping (Müller et al. 1998). An investigation 
of the derivative images shows even more serious 
effects of periodic noise in bands 32 onwards. Fur-
thermore, there is a considerable wavelength gap be-
tween bands 32 and 33, which renders it unsuitable 
for wavelet de-noising operations. Consequently, 
only bands 1 (0.49 µm) to 32 (1.038 µm) are consid-
ered in subsequent analysis. 

The selection and identification of the image 
endmembers is based on the Pixel Purity Index algo-
rithm and associated tools available in the ENVI 3.4 
software package (Research Systems Inc. 2001). The 
wavelet-based de-noising and derivative calculation 
is performed using in-house MIPS image processing 
software. Our algorithm does not simultaneously 

DAIS 7915 hyperspectral image 

Template matching 

Classification

    Wavelet-based de-noising 

Endmember selection 

     Derivative calculation 
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perform smoothing and differentiation as the 
Savitzky-Golay polynomial curve-fitting procedure 
does, as this procedure might change the original 
curve pattern instead of removing the random noise 
in the signal. Consequently, artefacts could be intro-
duced (Tsai and Philpot 1998). We calculate the de-
noised signal first, then the derivative of the de-
noised signal. 

Since we are using a one-dimensional wavelet 
transform, the de-noising procedure operates in the 
spectral domain of the hyperspectral cube. Each 
pixel in the image is de-noised, and its derivative 
calculated. The result is a set of derivative images. 
Investigation of the suitability of second or higher-
order derivatives indicates that second and higher-
order derivatives are badly affected by high fre-
quency noise in the data, as derivative calculation 
further amplifies any noise in the original signal. 
Thus, only the first order derivative is considered 
further.

The template matching algorithm calculates the 
degree of resemblance match between the de-noised 
endmember derivative spectra and all the image pix-
els. The template matching procedure provides a 
good first-cut on the spatial distribution of the major 
land cover types in the area, using a ‘hard’ classifi-
cation approach. 

4 RESULTS AND DISCUSSION 

The methodology described above was applied to a  
subimage of 512 x 512 pixels taken from the DAIS 
hyperspectral image of the La Mancha study area. 
Five template spectra were used, and the output was 
five greyscale images showing the similarity of each 
hyperspectral image pixel to each of the templates. 
A comparison of first derivative image template 
matching result before and after wavelet-based de-
noising was carried out to evaluate the effectiveness 
of the methodology. The result of template matching 
for the endmember ‘water’ is shown in figure 2. The 
de-noised similarity image of the water endmember 
is shown in figure 3. In the de-noising procedure, the 
mother wavelet used was the Daubechies-4 with soft 
thresholding using the universal threshold value. The 
best match of the pixel in the image to the reference 
template is indicated by the brightest tone. 

We can see that, in the hard classification image 
before de-noising, the effect of striping in the data is 
being amplified and can be seen clearly in the grey-
scale image (figure 2). The effect of striping has 
been significantly reduced in the de-noised image 
with no significant degradation of the original in-
formation (figure 3). Thus, de-noising is accom-
plished while preserving the integrity of information 
in the data. 

Figure 2. The greyscale image of the water endmember first 

derivative template matching classification before de-noising. 

Figure 3. The greyscale image of the water endmember first 

derivative template matching classification after de-noising. 

In ideal circumstances, the data series to be proc-
essed by the classical first generation wavelet trans-
formation that we adopt in this work should be sam-
pled at regular intervals over the spectrum (Jansen 
2001). In our case, the sampling interval (distance in 
micrometres between band centres) varies from 
0.014 to 0.022 micrometres from band 1 to band 32. 
In theory, this situation renders the classical wavelet 
transform inapplicable. Interpolation could be em-
ployed to generate a series of equally spaced data 
points from the unequally-spaced data, but the proc-
ess of interpolating is a form of low-pass filtering so 
that the resulting equispaced data is smoothed. An 
alternative is to ignore the requirement of equal 
sampling intervals and proceed as if the data were 
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equally spaced (Pensky and Vidakovic 2001). How-
ever, this could be dangerous, since treating the ir-
regularly spaced data as if they are regularly spaced 
introduces additional noise into the data (Press et al.
1992).

The key question is: how robust is the method of 
wavelet de-noising to departures from the assump-
tion of equal sample spacing? If the variation in in-
ter-sample spacing is small – say less than 10% of 
the ideal (equal) inter-sample spacing - then the ad-
ditional noise introduced by the use of unequally 
spaced data could be considerably less than the sam-
pling variation of the noise variance estimate that is 
used in wavelet de-noising. If this is the case, then 
the de-noising method will produce results that are 
adequate, if not ideal. In the context of smoothing, 
Press et al. (1992) claim that irregular spacing of 
data points in a series that is being smoothed using a 
moving window filter will not have a serious impact 
on the result as long as the noise at a single point 
multiplied by 2/N  (N is the window length) is 
greater than the change in f over the range of the 
moving window (f is the spectrum value). This is not 
directly applicable to wavelet de-noising, but it does 
indicate that the assumption of equal spacing is not a 
strict one. 

Examination of the DAIS data used in this study 
shows that 10 out of the 32 data points lie outside 
the range rx ± , where x is the mean spacing be-
tween spectral bands and r is equal to 10% of the 
mean value. The noise added by the violation of the 
equispaced sampling assumption will be measurable 
(though not easy to estimate) but, given the noisiness 
of the DAIS spectra, it is unlikely to have a signifi-
cant effect. In support of this conclusion it should be 
pointed out that, with a data series of length n = 32, 
the standard error of the noise variance estimate will 
be large, and the additional noise introduced by the 
use of unequal sample intervals should be consid-
erably less than the estimation error of the noise 
variance. The only way to test this conclusion is to 
observe the results achieved by de-noising based on 
wavelet shrinkage. 

The formal accuracy assessment on the ‘hard’ 
classification result has not yet been performed, but 
the classified first derivative map appears to be rea-
sonably accurate and close to what the authors ob-
served during the fieldwork. The limitation on the 
use of the hyperspectral bands, due to the very high 
susceptibility of the data to striping after band 32, 
could result in difficulties in the extraction of more 
information from the hyperspectral data. However, 
investigation of the result suggests that, even with 
the limited number of bands used in the classifica-
tion, the result is still acceptably good. This also 
could suggest the possibility of using derivative fea-
tures as a feature reduction tool. 

The problem associated with the characteristics of 
the sensor, such as the scanning mechanism that re-

sults in the susceptibility to striping, could limit the 
effectiveness of derivative analysis. A higher sensor 
quality might permit less problematic use of deriva-
tive analysis. Another problem in the use of the 
technique is the selection of the so-called ‘mother 
wavelet’ which, in effect, defines the high and low 
pass filter coefficients that are used in the hierarchi-
cal decomposition. There are a number of options. It 
is difficult to find any practical advice on which one 
should be used. The fixing of a universal value for 
the threshold to be used in de-noising is also open to 
subjectivity. Nevertheless, the combination of the 
use of derivative spectra and wavelet de-noising ap-
pears to be an effective way of processing hyper-
spectral imagery. 

5 CONCLUSIONS 

Derivative technique provides an alternative way in 
the analysis of hyperspectral data besides the 
straightforward use of original reflectance data. 
However, the advantages of using derivative analy-
sis can be seriously hampered by the sensitivity of 
the technique to noise in the data. The wavelet-based 
de-noising technique is shown to be as an effective 
way to deal with noisy signals normally encountered 
in remote sensing data. This preliminary study sug-
gests that the combination of derivative and wavelet-
based de-noising techniques is feasible for analysis 
and mapping using hyperspectral data. It has been 
shown that the derivative spectra or image from de-
noised data can be interpreted more easily than the 
derivatives of the raw data. 

 The research on the use of wavelets in hyper-
spectral remote sensing is still very limited and 
many opportunities are open for future investigation. 
Future work will include further investigation of the 
robustness of wavelet de-noising to unequally 
spaced data points, and the use of the de-noised de-
rivative spectra in a stepwise unmixing method that 
will be extendable to coarser resolution data such as 
Landsat ETM+ (which, unlike the DAIS hyperspec-
tral data, is acquired on a regular basis and is there-
fore suitable for monitoring temporal change in this 
important and vulnerable area). The use of two-
dimensional wavelet transforms for de-noising two-
dimensional signal (e.g. raster images) is also feasi-
ble and will be the next step in the research. 
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