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ABSTRACT: Novel methods are developed to directly assimilate remote sensing data to (a) discrete in situ
monitoring data and (b) environmental models. The objective is to investigate the feasibility of the devel-
oped methods as they are applied to the operative and semi-operative systems employed in Finland by the 
Finnish Environment Institute. The development work is focused on (a) water quality monitoring and pre-
diction and (b) hydrological monitoring and forecasting. The investigated applications include the monitor-
ing and prediction of snowmelt, runoff and the level of soil moisture/evapotranspiration. The developed as-
similation procedures take into account the accuracy characteristics of physical models (or those of in situ
data), the accuracy of remote sensing data and models, and additionally, the propagation of errors with 
time. The first test results of satellite data assimilation to dynamical environmental models were obtained in 
snowmelt monitoring/discharge forecasting. These results indicate that the inclusion of satellite data im-
proves the performance of run-off forecasting models during the critical snow melt period. As well, encour-
aging results were obtained in the in the case of snow depth mapping when assimilating remote sensing 
data to discrete in situ observations (to snow depth values interpolated from discrete observation data). 

1 INTRODUCTION

The assimilation of remote sensing data to aquatic 
and terrestrial environmental models is a new 
topic, the status of which is mainly in the level of 
basic research. First suggestions and test results 
have been reported for such applications as: (a) re-
trieval of snow water equivalent using space-borne 
microwave radiometer data combined with hydro-
logical snow models (Wilson et al., 1999), (b) soil 
moisture and temperature monitoring in non-
forested areas using the assimilation of hydrologi-
cal model predictions and microwave remote sens-
ing data (Houser et al., 1998), and (c) coupling of a 
hydrodynamic ecosystem model with optical satel-
lite data for investigating the phytoplankton dy-
namics in a coastal ecosystem (Semovski et al., 
1999). Semi-operative systems have been tested 
for few applications. They include the monitoring 
of suspended matter in coastal areas by assimilat-
ing remote sensing data to water quality models 
(Vos et al., 1998). The assimilation methods pro-
posed and tested up-to-date are relatively simple  
approaches that include deficiencies. Typically, 
they do not properly consider the stochastic error 

characteristics of physical models and remote sens-
ing observations, or they are restricted to the use of 
linear assimilation methods.  

Our research is focused on (1) water quality 
monitoring and (2) hydrological modeling and 
forecasting. The objective is to develop a novel 
methodology to assimilate remote sensing data to 
dynamic environmental models. The specific ap-
plications include (a) water quality monitoring and 
prediction in lake areas and (b) hydrological moni-
toring and forecasting, including snow melt and 
runoff/discharge monitoring, and additionally, es-
timation of soil moisture and evapotransipiration 
under summer conditions. 

The methods are developed and tested for Fin-
nish conditions (and the Baltic Sea) using available 
optical and microwave satellite data, such as 
NOAA AVHRR, ERS-2 SAR and MODIS spec-
trometer observations. However, part of the meth-
odology development and testing work has been 
carried out using other available data sets, includ-
ing passive SSM/I microwave radiometer observa-
tions covering the northern parts of Eurasia. 
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2 ASSIMILATION METHODOLOGY  

The developed assimilation techniques take into 
account the accuracy characteristics of physical 
models - or those of interpolated in situ. Also, the 
statistical accuracy characteristics of remote sens-
ing data and remote sensing models and the propa-
gation of errors with time are simultaneously con-
sidered. The tested algorithms include an approach 
in which both the physical/conceptual environ-
mental model and the remote sensing model are 
optimized by applying a constrained iterative algo-
rithm in which the difference between the remote 
sensing model and remote sensing observations is 
minimized by optimizing the value of an uncertain 
physical model state variable(s) (statistical inver-
sion using a maximum a posteriori likelihood 
method), refer to Fig. 1. 

Figure 1. A general flow chart of data assimilation system. 
The physical dynamic environmental model g is linked to 
satellite data through a remote sensing model f (a forward 
model that describes the satellite observations as a function 
of physical model state variables X). The optimum value(s) 
of state variable(s) is/are searched by finding a global mini-
mum of a cost function that includes the squared difference 
of (multi-channel) satellite observations and simulated satel-
lite observations (Y – Y’)2.

2.1 Practical implementation of method in case 
of hydrological forecasting 

The developed assimilation method is imple-
mented according to principle presented in Fig. 1. 
In practice, the hydrological model is optimized 
with respect to a certain model state variable(s) by 
searching iteratively a global minimum of a spe-
cific cost function.  The cost function takes into 
account (a) the squared difference of remote sens-
ing model predictions and remote sensing observa-
tions and (b) the squared difference of the itera-
tively adjusted and the originally determined value 
of the state variable(s). These both terms are 
weighed with the statistical accuracy of remote 
sensing model predictions and that of the hydro-
logical model predictions, respectively. 

The application investigated here is the assimi-
lation of remote sensing data to an operative hy-
drological model during the spring melt period. 
The particular model state variable adjusted in the 
assimilation is the Snow Covered Area (SCA), as 
both optical and microwave radar satellite observa-
tions are highly sensitive to changes in SCA, also 
in boreal forest zone (Metsämäki et al., 2001). 

2.2 Method combining remote sensing data with 
interpolated observation data 

In this case, an estimate for the value of a cer-
tain geophysical variable for a given location is 
first interpolated from discrete observations. In the 
second step, that value is used as an a priori esti-
mate when a remote sensing model is fitted to 
space-borne observations by optimizing the value 
of the geophysical variable. In the fitting proce-
dure, the a priori value of the variable is weighed 
with its modeled statistical uncertainty, which is 
estimated using spatial data analysis techniques 
(kriging interpolation). As well, the remote sensing 
data is weighed with the estimated accuracy of re-
mote sensing data modeling. In that case, weighing 
factors are determined by analyzing how well the 
remote sensing model describes the observations at 
the locations of discrete data points for the day un-
der investigation

3 STUDY AREAS, MODELS AND DATA  

The main test areas are the River Kemijoki drain-
age area, northern Finland (snow hydrology appli-
cations), Lake Längelmävesi, southern Finland 
(water quality applications) and Siuntio test site 
(soil moisture and evapotranspiration applications). 
Additionally, the whole northern Eurasia is used as 
a test site in testing the developed assimilation 
techniques for snow depth mapping. As well, the 
Gulf of Finland and the Finnish coastal areas are 
used as additional test sites in investigations con-
cerning water quality prediction. In this paper we 
concentrate on presenting first results obtained for 
the River Kemijoki area and northern Eurasia. 
Hence, data and models dealing with these two re-
gions are discussed next in more detail.  

3.1 Snow hydrology applications 

 The testing of assimilation techniques for snow 
melt and runoff prediction applications is carried 
out for a sub-region of the river Kemijoki drainage 
area (northern Finland), see Fig. 2. The hydrologi-
cal model tested is the operational WSFS (Water-
shed Forecasting and Simulation) model of the 
Finnish Environment Institute. The same model is 
used to forecast the discharge of all major rivers of 
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Finland. The model input data includes several in-
terpolated meteorological variables, such as tem-
perature and precipitation. 

Figure 2. Assimilation methodology test site near the Lake 
Lokka, northern Finland. The sub-darinage areas employed 
by the WSFS model are also shown. The test site covers a 
small section of the River Kemijoki drainage area. The width 
of the depicted area is 60 km.  

The satellite data tested up-to-date consists of a 
total of 16 ERS 2-satellite C-band SAR images 
from the years 1997, 1998, 2000, and 2001 (spring 
melt season for each year). The backscattering val-
ues from 14 small sub-drainage areas (calculation 
units of the hydrological model shown in Fig. 1) 
are classified into five classes based on forest stem 
volume information available through digital land 
use data. The averaged backscattering coefficient 
values of different classes (from each sub-drainage 
area) are employed in the actual data assimilation 
procedure.

The employed remote sensing model is based 
on the semi-empirical HUT forest backscattering 
model (Pulliainen et al., 1999a), which describes 
the average backscattering coefficient of forested 
terrain as a function of forest stem volume (bio-
mass). The effect of snow cover is included in the 
modelling approach empirically by applying refer-
ence images that represent both totally wet snow 
covered conditions and snow-free conditions. As 
an outcome, the model predicts the radar-observed 
backscattering coefficient as a function of Snow 
Covered Area (SCA) and forest stem volume. Ad-
ditionally, the model takes into account the tempo-
ral, weather dependent, changes of forest canopy 

backscatter, which is essential regarding SCA es-
timation performance (Pulliainen et al., 2001). 

3.2 Snow depth mapping applications 

The testing of an algorithm that assimilates re-
mote sensing data to interpolated in situ data was 
carried out for 22 stations around the Northwestern 
Russia and Siberia for the winter of 1993/94. The 
reference data consisted of daily in situ snow depth 
observations from weather stations. These data 
were available through NSIDC/University of Colo-
rado (Armstrong, 2001). All the stations are lo-
cated in the boreal forest or sub-arctic zone of 
Eurasia. Observations from test stations were used 
for determining the interpolated reference snow 
depth masks in data assimilation algorithm testing. 
The algorithm testing was carried out using daily 
averaged SSM/I brightness temperature observa-
tions (Maslanik and Stroave, 1990) from 22 fixed 
grid cells around each station, each cell having a 
size of 25 km by 25 km.  

The brightness temperature model employed in 
the data assimilation is the semi-empirical, radia-
tive transfer approach-based HUT Snow Emission 
Model (Pulliainen et al., 1999b). 

4 RESULTS

4.1 Discharge forecasting and SCA estimation 
during the snow melt period 

The accuracy improvement of both the discharge 
forecasting and SCA estimation is preliminarily 
tested for the River Kemijoki test site using ERS-2 
SAR data. For the validation of results several ref-
erence data sets were available: Discharge meas-
urements, SCA estimations from optical satellite 
images, and weather station observations on tem-
perature, daily SCA and daily snow depth value.

  The WSFS model has two correction factors 
that can be adjusted historically: temperature and 
precipitation correction factors. These both factors 
have a direct effect on SCA during the spring melt 
period. Increasing the temperature accelerates the 
melting process (if done during the melting season) 
or shifts the beginning of the melting earlier. In the 
other hand, increasing the precipitation (if done be-
fore the melting season) increases the snow depth 
and the volume of the discharge. In practice, the 
assimilation procedure adjusts either of these two 
parameters instead of SCA. These parameters can 
be used to drift the internal model state variable 
SCA to the direction that the satellite observations 
points. The output of the model (discharge) be-
haves though quite differently in these cases. 
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An example of assimilation results is shown in 
Fig. 3. In this case, assimilating a single SAR im-
age into the WSFS model optimised the precipita-
tion correction coefficient. Fig. 3 depicts the dis-
charge prediction of the WSFS model obtained 
using this adjusted precipitation correction coeffi-
cient. The original WSFS discharge forecast and 
the independently measured discharge are also 
shown for comparison. Additionally, Fig. 3 pre-
sents the original SCA prediction together with the 
SCA prediction calculated using the adjusted pre-
cipitation correction coefficient. 

Another example on assimilation performance 
is depicted in Fig. 4. In this case the temperature 
correction factor is adjusted in the assimilation 
procedure. Again, the discharge forecasts obtained 
with and without data assimilation are depicted, as 
well as the corresponding SCA predictions. The 
observed true discharge is also shown 

The test results indicate that the inclusion of the 
satellite data improves the performance of the dis-
charge forecast model during the snowmelt period. 
However, difficulties arise due to the prefixed pa-
rametrisation of hydrological models. The results 
indicate that the optimum assimilation perform-
ance is obtained when the regional parametrisation 
is changed based on remote sensing data. 

4.2 Snow depth estimation through the 
assimilation of radiometer observations to 
interpolated in situ observation data 

The assimilation algorithm testing was carried out 
using altogether 3300 data points from 22 stations 
representing a five-month period. The performance 
characteristics were determined for each station, 
one by one, by assuming that the Snow Depth (SD) 
values for that station are unknown while they are 
known for the other 21 stations. The results indi-
cate that the use of SSM/I data, in addition to 
ground-based observations, improves the SD esti-
mation accuracy in 62% of the investigated 3300 
cases. Further on, the magnitudes of improvements 
were higher than the magnitudes of observed dete-
riorations (i.e. cases where data assimilation 
shifted SD estimates towards the wrong direction). 
Altogether, data assimilation appeared to perform 
well for 20 test stations out of the total of 22 sta-
tions. An example of assimilation results for a sin-
gle test station is shown in Fig. 5, and the histo-
gram on accuracy improvement obtained for 22 
test stations is presented in Fig. 6. 

Figure 3. Measured (observed) discharge, discharge from the 
WSFS model without (original) and with the precipitation 
correction obtained through the assimilation procedure, and 
corresponding SCA predictions for spring 1998. The ERS-2 
SAR image used for the assimilation is acquired for 13 May 
1998. 
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Figure 4. Measured (observed) discharge, discharge from the 
WSFS model without (original) and with the temperature 
correction obtained through the assimilation procedure, and 
corresponding SCA predictions for spring 2000. The ERS-2 
SAR image used for the assimilation is acquired for 24 May 
2000. 

Figure 5. Improvement of SD estimation accuracy for a sin-
gle test station (Erbogacen, Siberia) obtained by the assimila-
tion of SSM/I data to interpolated SD value. 

Figure 6. Histogram of the improvement/deterioration of 
Snow Depth (SD) estimation accuracy when SSM/I data are 
assimilated to interpolated SD estimates. The results are de-
termined for 22 test stations around Siberia and northwestern 
Russia.

4.3 Potential of data assimilation in the case of 
water quality forecasting 

Fig. 7 demonstrates the high potential of combin-
ing optical satellite spectrometer data with hydro-
dynamic ecosystem models. Fig. 7 shows the mod-
eled water quality (phytoplankton biomass) and 
satellite data-derived water turbidity value for the 
Neva Estuary in the Gulf of Finland. The depicted 
results show that remote sensing data- based esti-
mates on water quality characteristics yield spatial 
behavior patterns that are similar to those obtained 
by ecosystem models. This indicates that the as-
similation of remote sensing data to ecosystem 
models can probably significantly improve the spa-
tial accuracy of models, especially in hot spot re-
gions where the spatial variability of water quality 
is high, as in the Gulf of Finland.

As hydrodymic ecosystem models are often 
complicated 3-D models, linear assimilation tech-
niques, such as extended Kalman filtering, are 
more feasible for operative use than iterative non-
linear methods. 
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Figure 7. Turbidity (FNU) derived from MODIS spectrome-
ter data (above) and phytoplankton biomass (mg WW l-1)
simulated with the Ecosystem Model of the Finnish Envi-
ronment Institute (below) in the Neva Estuary on August 27, 
2000. 

5 CONCLUSION 

The obtained results indicate that the satellite data 
assimilation is a potential tool for improving the 
performance of operative environmental models. 
Iterative methods can be used when remote sensing 
data is combined with relative simple models, such 
as conceptual discharge/runoff prediction models 
(quasi-2D-models). In this investigation we tested 
these methods successfully with the operational 
Finnish WSFS-model. As well the iterative assimi-
lation methods demonstrated here appear to be fea-
sible for combining satellite data with estimates on 
geophysical variables spatially interpolated from 
discrete ground observations. 
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