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ABSTRACT: Optical remote sensing imagery and orthophoto derived stem density were classified to map
coniferous forest cover for a study area located in the Western Hunsrück, Germany. Our objectives were (i) to
investigate if hyperspectral data contain more information relevant to classification of species and age classes
than multispectral imagery and (ii) to test in what way classification results can be improved through the inte-
gration of orthophoto derived stem densities into the classification process.  
Airborne hyperspectral data (HyMap) covering the entire test site has been acquired for July 1999. Subse-
quent to radiometric and geometric correction, data reduction and enhancement was performed by a Minimum
Noise Fraction transformation. Multispectral data (TM) was simulated through degradation of the spectral
and/or spatial information of the HyMap data. Three different synthetic datasets were created: spectrally de-
graded, spatially degraded and a combination of both. Stem density information were added to the original
HyMap imagery for classification purpose. Stem density had previously been derived from black/white ortho-
photos by an automatic method. Classification was achieved by the Spectral Angle Mapper algorithm.  

Our results show that mapping of coniferous forest cover is improved by the use of hyperspectral imagery 
compared to multispectral data and that classification accuracy is greater using 30 m spatial resolution data 
compared to 5 m resolution data. Integration of orthophoto derived stem density into the classification process 
resulted in slightly better performance compared to the results obtained with image data alone. 

1 INTRODUCTION

Knowledge about forest species and age is critical to 
both forest resource management and scientific re-
search. For instance, forest inventories routinely col-
lect species distribution in forest stands and timber 
volume estimates highly depend on stand age. Bio-
geochemical process models, such as Forest-BGC 
(Running & Coughlan, 1988; Running, 1994) pa- 
rameterize certain model input variables depending 
on tree species. 

Forest species and age recognition can, apart 
from field survey, reliably achieved through aerial 
photo interpretation. Data from broad band remote 
sensing instruments have been used to distinguish 
between coniferous and deciduous stands (Nelson et 
al., 1985) and at more detailed species resolution 
(Franklin, 1994; Vohland, 1997). Detailed mapping 
of forest species and age classes through remote 
sensing can either be improved by high spatial or 
high spectral resolution sensors. 

Use of hyperspectral data for forest studies has 
mainly been focused on biochemistry (Peterson et 
al., 1988; Wessman et al., 1988; Johnson et al., 

1994; Gastellu-Etchegorry et al., 1995) and leaf area 
index (Gong et al., 1992). However, few studies 
have reported on the use of hyperspectral data in 
mapping forest species. In situ hyperspectral data 
has been explored to discriminate six conifer species 
(Gong et al., 1997) and several tropical species 
(Cochrane, 2000). Hyperspectral image data has 
been used for differentiation of forest species 
(Franklin, 1994; Martin et al., 1998) and for algal 
species recognition (Alberotanza et al., 1999). Even 
less studies have been carried out to identify forest 
age classes from hyperspectral imagery. 

2 OBJECTIVES

The objectives of this study were (i) to compare the 
classification performance of four different remote 
sensing datasets with different spectral and spatial 
resolution to map forest species and age classes and 
(ii) to investigate if additional information on stem 
density can improve the classification results. Three 
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hypotheses associated with the objectives have been 
formulated: 

Hypothesis 1: An increase in image variance due 
to higher spatial resolution might lead to problems in 
the classification process. This assumption is sup-
ported by classification results obtained by Martin & 
Howarth (1989) who found that an increase in spa-
tial resolution did not result in higher classification 
accuracies. In the case of forest cover, each tree 
crown which is distinguishable in the high resolution 
imagery will have a sunlit and shaded portion with a 
highly variable spectral response. Moreover, rela-
tively small gaps in the forest cover where under 
story vegetation or bare soil become visible might be 
resolved in the image. These effects are largely 
smoothed out in the low resolution dataset with the 
effect of a lower spatial variance. Thus, we expect a 
better classification result from the dataset with 30 
m compared to the one with 5 m resolution.  

Hypothesis 2: As hyperspectral data probably 
contain more information relevant to the classifica-
tion of forest cover than broadband multispectral 
data, we expect a better performance of the high 
spectral resolution imagery in terms of classification 
accuracy. Contrary to broad band data analysis tech-
niques, hyperspectral data offer the use of full-
spectrum analysis techniques that exploit all the in-
herent information. As an example, it has already 
been shown that the estimation of canopy LAI using 
hyperspectral imagery can be achieved with an accu-
racy greater than would be expected with a broad-
band sensor (Gong et al, 1992). 

Hypothesis 3: The results of the classification of 
forest cover may be improved through addition of 
orthophoto derived stem densities into the classifica-
tion process. Various other types of ancillary infor-
mation have already been utilized in multispectral 
classification of vegetation cover: Wulder (1998), 
for instance, used texture and Franklin (1994) used 
digital elevation models as additional information 
and observed an increase of overall classification ac-
curacy compared to using remote sensing data on a 
pixel basis alone. 

Figure 1. Four datasets of varying spectral and spatial resolu-
tion. Upper left: TM, 30 m; upper right: TM, 5 m; lower left: 
HyMap, 30 m; lower right: HyMap, 5 m.  

3 STUDY AREA AND DATA 

The area of study (49°40’N, 7°10’E) is located in the 
Idarwald forest in south-western Germany on the 
north-western slope of the Hunsrück mountain ridge. 
The dominant forest species are Norway spruce 
(picea abies), beech (fagus sylvatica), oak (quercus 
petraea) and Douglas fir (pseudotsuga menziestii).
Active forestry practices in this area include selec-
tive cutting, plantation establishment and thinning. 

Hyperspectral image data were acquired using the 
HyMap sensor built by Integrated Spectronics, Aus-
tralia in July 1999. HyMap records data in 128 con-
tiguous spectral bands covering the spectral range of 
0.4-2.5 µm with a spectral resolution of 10-20 nm. 
The spatial resolution was set to 5 m with a full 
scene covering 4 km x 10 km. 

Radiometric corrections of the HyMap data were 
performed at the Remote Sensing Department, Uni-
versity of Trier following an approach by Hill et al. 
(1995, 2001). The processing steps involved atmos-
pheric correction and sensor calibration. The first 
step converted digital numbers to at-sensor-
radiances. In the second step, the effects of the at-
mosphere were removed including errors due to 
pixel orientation. The dataset was geocoded using 
parametric image processing software PARGE 
(Schläpfer et al., 1998) 

The most recent forest inventory for the study 
area (01.10.1994) including stand information on 
species composition and age classes has been inte-
grated into a Geographical Information System (Fo-
GIS) by Vohland (1997).

Stem density had previously been estimated from 
aerial orthophotos by automatic identification and 
counting of individual tree crowns (Atzberger & 
Schlerf, 2002a; b). Stem density was integrated into 
the FoGIS and mean as well as standard deviation at 
forest stand level were calculated. 

Figure 2. Data input and processing steps followed for the clas-
sification of forest cover. 
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4 METHODS 

The classification was carried out for each of the 
four datasets separately (Figure 1). Stem density was 
solely added to the dataset with high spectral and 
high spatial resolution. The procedure used for the 
classification of the conifer forest cover using the 
high spectral resolution dataset in combination with 
the stem density was as follows (Figure 2): 
a. Masking of the deciduous forest cover for sepa-

ration from the coniferous stands. The mask was 
generated through an unsupervised classification 
of the HyMap data (Isodata algorithm). 

b. Data reduction and enhancement of the hyper-
spectral data was performed by a Minimum 
Noise Fraction transformation (Green et al., 
1988; Lee et al. 1990). The first 19 MNF-
fractions were separated from the remaining 
fractions and used for further analysis. Synthetic 
TM-datasets were created by selecting those 
HyMap bands that correspond to the central 
wavelengths of the broad Thematic Mapper 
bands. Spatial degradation of the high spatial 
resolution data (5 m) was done by calculating the 
mean pixel value within a 30 m x 30 m array. 

c. The aim of the training stage is to collect a set of 
statistics that describe the spectral response pat-
tern for each species/age class. The polygons in 
the FoGIS representing the forest stands were 
used to extract spectral signatures for each class 
(5-15 polygons per class, 100-1000 pixels per 
polygon). In total, 57 subclasses and 52.844 pix-
els were obtained. Training data were divided 
randomly into three sets of pixels: 10 percent 
were used for training (training pixels), 25 per-
cent for validation of the classification result 
(validation pixels) and the remaining 65 percent 
pixels were not used. The training setup was de-
signed this way to reflect the small amount of 
ground truth commonly available in reality. Af-
ter a visual interpretation of the collected spectra 
(Figure 3) it was decided to chose 6 species/age 
classes for classification (Norway spruce: 4 age 
classes; Douglas fir: 2 age classes). 

d. The Spectral Angle Mapper (Kruse et al, 1993) 
was employed for supervised classification. The 
algorithm determines the spectral similarity be-
tween two spectra by calculating the angle be-
tween the spectra, treating them as vectors in a 
space with dimensionality equal to the number of 
bands (Kruse et al, 1993). SAM compares the 
angle between the spectrum vector of the known 
class and each pixel vector (unknown class) in n-
dimensional space. In the classification stage, the 
class with the smallest angle is assigned to the 
corresponding image pixel.  

e. The 57 subclasses obtained from the classifica-
tion were condensed into the 6 main classes. 
Then post-classification smoothing was per-

formed to remove single isolated image pixels 
(sieve and clump). 

f. To assess the accuracy the validation pixels were 
used. A confusion matrix was generated from the 
validation pixels for each classification. Two 
measures of classification accuracy are reported. 
Overall accuracy (OAA) quantifies the percent-
age of cases correctly classified: 
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where nk+ is the sum of the validation pixels in a 

class and n+k is the sum of the classified pixels in 

that class. 

Figure 3. Reflectance spectra of Norway spruce and Douglas 
fir of different age. 

5 RESULTS AND DISCUSSION 

Table 1 lists confusion matrices obtained from clas-
sifying each of the 5 sets of data (2 types of spectral 
resolution x 2 types of spatial resolution plus 1 type 
high spectra and high spatial resolution combined 
with stem density. Table 2 lists overall accuracies 
and kappa coefficients for the same datasets.  
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Table 1. Confusion matrices for 5 different datasets: A: hyperspectral, 5 m; B: hyperspectral, 30 m; C: multispectral, 5 m; D: mul-
tispectral 30 m, E: hyperspectral 5 m and orthophoto derived stem density 

A)

B)

C)

D)

E)

 Ground Truth (Percent) 

Class 

Spr.  
>80a 

Spr.  
50-80a 

Spr.  
30-50a 

Spr.  
10-30a 

Dou.  
30-50a 

Dou.  
10-30a Total 

Unclassified 4.2 4.1 8.1 1.2 2.8 1.7 4.4

Spr. >80a 84.1 6.8 3.8 0.2 0.1 0.0 16.4

Spr. 50-80a 10.3 86.7 29.2 0.0 3.8 0.2 32.6

Spr. 30-50a 1.1 2.2 58.1 0.7 2.0 0.4 15.1

Spr. 10-30a 0.3 0.2 0.6 97.9 1.0 2.4 9.1

Dou. 30-50a 0.0 0.0 0.1 0.0 89.5 0.8 14.5

Dou. 10-30a 0.0 0.0 0.0 0.0 0.7 94.5 7.8

100.0 100.0 100.0 100.0 100.0 100.0 100.0

 Ground Truth (Percent) 

Class 

Spr.  
>80a 

Spr.  
50-80a 

Spr.  
30-50a 

Spr.  
10-30a 

Dou.  
30-50a 

Dou.  
10-30a Total 

Unclassified 3.7 1.8 7.0 0.6 20.0 4.4 6.5

Spr. >80a 32.1 15.1 2.3 0.0 0.5 0.0 10.4

Spr. 50-80a 63.3 81.6 48.3 0.0 22.0 0.4 47.6

Spr. 30-50a 0.0 0.1 38.3 14.3 3.8 0.6 10.4

Spr. 10-30a 1.0 1.3 4.0 84.2 0.6 4.9 7.4

Dou. 30-50a 0.0 0.0 0.0 0.0 46.7 20.3 9.5

Dou. 10-30a 0.0 0.0 0.2 1.0 6.4 69.4 8.1

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 Ground Truth (Percent) 

Class 

Spr.  
>80a 

Spr.  
50-80a 

Spr.  
30-50a 

Spr.  
10-30a 

Dou.  
30-50a 

Dou.  
10-30a Total 

Unclassified 2.8 3.9 1.3 3.0 1.1 2.2 2.4

Spr. >80a 95.4 0.0 0.1 0.0 0.0 1.8 17.7

Spr. 50-80a 1.6 92.3 4.5 0.0 0.0 0.0 25.5

Spr. 30-50a 0.2 3.7 94.0 0.0 0.1 0.0 22.6

Spr. 10-30a 0.0 0.0 0.0 97.0 0.0 0.1 6.2

Dou. 30-50a 0.0 0.0 0.0 0.0 98.8 0.0 15.9

Dou. 10-30a 0.0 0.0 0.0 0.0 0.0 95.9 9.6

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 Ground Truth (Percent) 

Class 

Spr.  
>80a 

Spr.  
50-80a 

Spr.  
30-50a 

Spr.  
10-30a 

Dou.  
30-50a 

Dou.  
10-30a Total 

Unclassified 8.0 6.4 10.8 17.8 4.8 3.3 7.9

Spr. >80a 44.1 10.6 1.1 0.0 0.0 0.5 11.2

Spr. 50-80a 41.9 83.0 41.1 0.0 0.0 0.0 38.9

Spr. 30-50a 6.0 0.0 45.7 5.0 0.0 0.0 11.9

Spr. 10-30a 0.0 0.0 1.3 77.2 0.2 3.2 5.6

Dou. 30-50a 0.0 0.0 0.0 0.0 94.3 2.3 15.4

Dou. 10-30a 0.0 0.0 0.0 0.0 0.7 90.8 9.2

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 Ground Truth (Percent) 

Class 

Spr.  
>80a 

Spr.  
50-80a 

Spr.  
30-50a 

Spr.  
10-30a 

Dou.  
30-50a 

Dou.  
10-30a Total 

Unclassified 3.5 3.6 5.5 0.5 2.1 1.5 3.3

Spr. >80a 90.0 10.3 4.1 0.0 0.4 0.0 18.4

Spr. 50-80a 5.6 84.3 25.4 0.1 3.4 0.1 30.2

Spr. 30-50a 0.6 1.7 64.3 0.1 2.8 0.4 16.5

Spr. 10-30a 0.4 0.1 0.6 99.3 0.5 2.4 9.1

Dou. 30-50a 0.0 0.0 0.1 0.0 89.9 0.7 14.6

Dou. 10-30a 0.0 0.0 0.1 0.0 0.9 94.9 7.9

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 2.  Summary of accuracies. 

Dataset Overall Accuracy Kappa Coefficient 

A: HyMap 5m 81.4 0.78
B: HyMap 30m 95.0 0.94
C: TM 5 m 55.9 0.47
D: TM 30 m 69.5 0.64
E: HyMap 5 m + Stem density 83.5 0.81
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The overall accuracy (OAA) using the dataset A 
(HyMap, 5 m) was 81 percent. This increased to 95 
percent using HyMap degraded to 30 m spatial reso-
lution (dataset B). Essentially the same tendency 
was obtained in classifying TM 5 m (dataset C) and 
TM 30 m (dataset D). OAA using TM datasets were 
generally considerably lower than those of HyMap 
datasets.

The OAA using the full set of HyMap 5 m data 
and stem density information (dataset E) was 83 
percent and thus 2 percent greater than the OAA us-
ing HyMap 5 m (dataset A) alone. 

The obtained results clearly confirm hypotheses 1 
and 2. Concerning hypothesis 3, it can not definitely 
be concluded that stem density information is critical 
for the classification of species/age classes. To fur-
ther investigate this problem, stem density should 
also be added to the other datasets in the classifica-
tion process. 

6 CONCLUSIONS AND FUTURE TASKS 

The potential of various sensors in recognition of 
forest cover is not yet fully identified. Current and 
future developments in sensor design are heading 
towards an increase in spatial and/or spectral resolu-
tion. From this study, it can be concluded that classi-
fication accuracies benefit from an increase in spec-
tral resolution. On the other hand, an increase in 
spatial resolution does not yield better classification 
results of conifer species and age when performed 
on pixel basis. However, no use was made of the in-
formation inherent in the high spatial resolution im-
agery concerning texture. 

Future tasks to be implemented into forest cover 
classification of hyperspectral imagery comprise 
spectral derivatives and neural network classifier 
which have already been tested with success on in 
situ data by Gong et al. (1997, 2001). In addition, 
the extent of improving the classification should be 
determined for various types of texture measures.  
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