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ABSTRACT: Very High Resolution (VHR) satellite images offer a great potential for the extraction of land-
use and land-cover related information for urban areas. The available techniques are diverse and need to be
further examined before operational use is possible. In this paper we applied two pixel-by-pixel classification 
techniques and the object-oriented image analysis approach (eCognition) for a land-cover classification of a 
Quickbird image of a study area in the northern part of the city of Ghent (Belgium). Only small differences in
overall Kappa were noted between the best results of the pixel-based approach (neural network classification 
with Haralick texture measures) and the object-oriented classification (eCognition). A rule-based procedure 
using ancillary information on elevation derived from a digital surface model was applied on the pixel-based
land-cover classification in order to obtain information on the spatial distribution of buildings and artificial 
surfaces.

1 INTRODUCTION

Urban decision makers are confronted with a com-
plex and dynamic environment. To be able to con-
duct a policy aimed towards sustainable regional de-
velopment, they require up-to-date information, 
supplied by efficient data-extraction systems that 
support their decision making processes. Satellite 
images offer this potential, but until recently their 
spatial resolution was too coarse to allow them to be 
operationally used for applications where greater 
spatial detail is needed, such as urban areas. Very 
High Resolution (VHR) satellite images implicitly 
contain a rich source of useful information for urban 
managers and planners. With two operational VHR 
satellites in orbit (Ikonos and Quickbird) we have 
possibilities like never before to obtain information 
at the urban level for extended areas. The possible 
applications are wide-ranging: inventorying built-up 
parcels at a regional scale, impervious surface map-
ping, mapping and assessing urban green areas, 
identifying urban morphological complexes, deter-
mining building density and amount of open spaces 
in the city for comparative urban research… 

The most common procedure to derive thematic 
maps from remotely sensed imagery is supervised 
image classification (Foody & McCulloch, 1995). 
Cities are, however, spectrally and morphologically 
complex entities. When we look at them from space 

we observe a huge set of building materials, each 
having its own characteristics. Allocating a pixel of 
unknown class membership to a pre-defined (urban) 
land-cover class based on its spectral properties is 
not a straightforward task in such environments. As 
a result of spectral heterogeneity and spatial vari-
ance, pixel-by-pixel classifications of urban areas of-
ten result in “speckled” classifications, i.e. thematic 
maps that lack spatial coherence. This is the case for 
any classifier that operates on individual pixels. 
Shadows of trees or buildings and sun glint on roofs 
or windows complicate matters even more. 

In order to derive useful thematic maps from 
VHR satellite images of urban areas, other ap-
proaches than the traditional pixel-by-pixel classifi-
cation are needed. One way to reduce the salt-and-
pepper effect in a pixel-based classification is to ap-
ply a standard majority filter (Gurney & Townshend, 
1983) or a more sophisticated spatial reclassification 
technique (Barnsley & Barr, 1996; Gong & How-
arth, 1992; Wharton, 1982) within a moving window 
of fixed size. The use of kernel-based approaches, 
however, has a number of disadvantages, including 
the difficulty of selecting an optimal kernel size, and 
the fact that the kernel is an artificial construct that 
does not refer to the spatial units that occur in the 
land-cover scene. To avoid the problems related to 
the use of kernel-based filtering methods, Barr & 
Barnsley (2000) propose a reflexive mapping proce-
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dure that operates on individual regions, i.e. groups 
of adjacent pixels that are assigned to the same land-
cover class by the classifier. The procedure merges 
regions that fall below an a priori defined, class-
specific area threshold with the smallest neighbour-
ing region that exceeds the area threshold. After 
each re-assignment the region-based topological 
structure of the image is rebuilt.  

An alternative way to look at the problem of 
structural clutter, instead of allocating individual 
pixels to a pre-defined land-cover class one-by-one, 
is to divide the image into regions of similar pixels 
prior to classification. These so-called segments do 
not necessarily have any meaning and can be con-
sidered as image primitives. Once they are created, 
they can entirely be assigned to the land-cover 
classes by any classifier. Many techniques of image 
segmentation have been developed (cfr. Pal & Pal, 
1993). The most common methods to segment a full 
image are: global thresholding (a survey of these 
techniques is given by Sahoo et al., 1988), region 
growing algorithms, watershed segmentation 
(Wegner et al., 1997) and texture segmentation algo-
rithms (based on spatial frequencies (Hofmann et al.,
1998), Markov Random Field models (Panjwani & 
Healy, 1995), co-occurrence matrices (Haralick & 
Shapiro, 1985), wavelet coefficients (Salari & Ling, 
1995) or fractal indices (Chaudhuri & Sarkar, 
1995)). An alternative segmentation method is the 
so-called probabilistic segmentation (Gorte, 1998). 
First, an unsupervised per-pixel classifier is applied 
on multi-spectral image channels. The segments are 
created after the classification by grouping adjacent 
pixels that have been allocated to the same class.  

 While they all address the problem of the salt-
and-pepper effect, these segmentation techniques 
suffer from significant drawbacks, e.g. over and un-
der segmentation or not being useful at all scales, 
which make them less suitable for urban land-
use/land-cover classification. Building on the idea of 
image primitives as objects, a novel approach to sat-
ellite image classification has recently been devel-
oped: object-oriented image analysis (Baatz & 
Schäpe, 1999). Embedded in the commercial soft-
ware eCognition, the object-oriented processing of 
image information involves handling image primi-
tives at different scales as objects. These objects are 
obtained with the multi-resolution segmentation 
technique (Baatz & Schäpe, 2000) and placed in a 
hierarchical network. With this approach, the objects 
not only have spectral properties. Shape, texture, 
context and information from super or sub-objects 
are also present. Many successful land-cover or 
land-use classifications have been obtained with this 
approach.

Because deriving useful information on urban ar-
eas from VHR satellite imagery is clearly a complex 
matter, five Belgian research laboratories are work-
ing together to tackle this problem in the framework 

of an OSTC funded research project (SPIDER). As 
part of the project, several strategies to derive land-
cover and land-use related information from VHR 
satellite images are being tested. 

In this paper we applied two pixel-by-pixel classi-
fication techniques and the object-oriented image 
analysis approach to map nine land-cover types for a 
small test zone located north of the city of Ghent. 
We also applied a post-classification knowledge 
based strategy, to improve the pixel-by-pixel classi-
fication result, using a DSM as an ancillary data 
source.

2 LEGEND, STUDY AREA, IMAGE DATA 
AND SAMPLING STRATEGIES 

2.1 Land-use / Land-cover legend 

The land-use and land-cover legend we adopted in 
this project is a hierarchical scheme with five main 
urban land-use types (table 1). They are subdivided 
into 18 level-two land uses, most of which are fur-
ther subdivided according to intra-class differences 
in land cover. 

Table 1. Land-use / land-cover legend  

The definition of the land-cover legend was an it-
erative process. We started out with a preliminary 
version that contained more land-cover types than 
the current one. First classification tests with an Iko-
nos image of Brussels showed us that we had been 
too ambitious. A lot of urban surface types with a 
grey appearance could not be spectrally distin-
guished. This was for instance the case for concrete, 
asphalt, cobblestone, slates, etc. All these classes 
were aggregated into a super-class labeled “grey sur-
faces”. The “mixed” land-cover class is present for 
visual interpretation in the context of validation, and 
was not used for classification purposes. 

Land use 1 (LU1) Land use 2 (LU2) Land cover (LC)

1. Buildings 1.1 Isolated house Grey surface

1.2 Block of houses Orange/red surface

1.3 Low building Green copper

1.4 High building Glass or plastic

1.5 Other Bare soil

Water

2. Road and rail network 2.1 Road Grass

2.2 Parking Crops

2.3 Railway Shrub and trees

2.4 Square Mixed

3. Hydrology 3.1 Water body

3.2 Watercourse

4. Vegetation 4.1 Urban green area

4.2 Agriculture

4.3 Forest

5. Miscellaneous 5.1 Sport or recreative area

5.2 Graveyard

5.3 Construction site

5.4 Other
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2.2 Image data and preprocessing

The area we selected for this study, measures 643 by 
2071 meters, and is situated in the northern part of 
Ghent (fig. 1). It contains diverse land-cover and 
land-use types. The industrial buildings next to the 
canal and the railway infrastructure in the east are 
directly connected with early twentieth century 
worker housing near the middle of the area. They 
contrast with the modern-day residential housing 
found in the western part. 

Figure 1. Quickbird PAN image of the study area © Digital 
Globe

A fragment of a Quickbird bundled image prod-
uct (PAN and multi-spectral), taken on August 23

rd

2002, and covering the study area was fully 3D or-
tho-rectified. Nine ground control points were meas-
ured using DGPS in real-time mode. The fixed GPS 
antenna of the Department of Geography of the Uni-
versity of Ghent was used as reference station. A 
reference digital surface model (DSM) was created 
using a set of aerial photographs at a 1/12000 scale. 
The DSM was developed with the photogrammetric 
software VirtuoZo and the actual ortho-rectification 
was accomplished with IMAGINE OrthoBASE®. 

2.3 Sampling strategies 

To train the classifiers and assess the results of the 
classifications, training and validation samples of the 
study area were gathered. This was accomplished by 
on-screen visual sampling using a PAN-XS fused 
image and high resolution aerial photographs as a 
backdrop. Six classes from the land-cover legend 
were retained: mixed was omitted and bare soil, 
green copper and crops were not present in the study 
area. To these classes we added a shadow class to 
take the omnipresent shadows into account. For each 
of these seven land-cover types, six pixels were 
sampled inside 20 polygons, for a total of 120 pixels 
per class (fig. 2). The sample points were verified on 
the field where necessary. From the 20 polygons per 
class, seven polygons were randomly selected as 
validation data and 13 as training data. 

After training and validation data for all classes 
had been gathered, the “grey surfaces” class was fur-
ther split into three classes with different tonal levels 
of grey: light, medium and dark. This was done by 
applying an ISODATA-cluster analysis on the re-
flectance values of all pixels within a grey-mask. 
Three steps were used for defining the mask. First an 
NDVI image was calculated from the red and near 

infrared bands. The NDVI image was then thresh-
olded to separate vegetation from other classes. Sec-
ond, a ratio image was calculated using the red and 
blue bands. This allowed us to extract all red surface 
pixels from the non-vegetated pixels identified in the 
first step. Third, all reflecting surfaces, shadow and 
water were extracted from the mask resulting from 
the previous step by excluding all pixels that have 
consistently high or low values in all spectral bands. 
Performing an ISODATA-clustering on values 
within the mask only, ensures that the resulting 
classes represent different tonal levels of grey and 
are not influenced by data values that do not belong 
to grey surface types.

Figure 2. Sampled pixels inside training and validation polygons 

We created three different training sets from the 
polygons selected for training. One contains four 
pixels, selected within each polygon, that were con-
sidered to be spectrally “typical” for the class to 
which the polygon belongs. Another contains the 
four typical pixels plus two atypical pixels per poly-
gon. In a third approach, blocks of 3x3 pixels were 
constructed around each training pixel in order to in-
crease the sample size. Following an inspection of 
the class signature histograms for each of the three 
sets, training pixels that were considered to be out-
liers were removed. 

The impact of the type of training set on the per-
formance of the classifiers was tested in the classifi-
cation stage. The training set that was obtained by 
constructing the 3x3 blocks around all individually 
sampled pixels was only used in the per-pixel classi-
fication approach. The same validation data were 
used to compare all strategies. 

On a small confidence site within the study area, 
we performed an exhaustive visual interpretation of 
land cover (fig. 3) and land use according to the 
class definitions shown in table 1. This interpretation 
was also used in the validation phase. 
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Figure 3. Visual interpretation of land cover for a subset of the 
study area 

3 LAND-COVER CLASSIFICATION 

Two major land-cover classification strategies have 
been applied. The first technique is the conventional 
pixel-by-pixel classification approach using a super-
vised classifier. Both maximum likelihood and neu-
ral network classifiers have been tested. The other 
approach is object-oriented image analysis, as im-
plemented in the commercial software eCognition.

3.1 Per-pixel land-cover classification 

The maximum likelihood classifier was applied 
without a-priori probabilities. The neural networks 
were built and trained with the Neuralware Predict 
software. They are characterized by cascade learning 
(Fahlman & Lebiere, 1990); this means that network 
architecture is not fixed in advance, but that nodes 
are iteratively added to the hidden layer during the 
training process. The effect of adding a node is as-
sessed with an independent set of test cases, ran-
domly selected from the training data. If adding hid-
den nodes to the network does not improve 
performance according to the selected error measure 
(average classification rate in this case), network 
training is halted. 

We used the four multi-spectral channels of the 
Quickbird image as input for the classifiers. The 
PAN channel and an NDVI image were also added, 
in an attempt to improve classification performance. 
We also trained a neural network with in addition to 
the spectral channels, texture images based on 
Haralick co-occurrence matrices (Haralick & 
Shapiro, 1985), calculated within a moving window 
on the PAN image. The texture images were based 
on the angular second moment (ASM), inverse dif-
ference matrix (IDM) and entropy (ENT) measures. 
They were calculated with window sizes five and 
eleven, for each of the four directions (horizontal, 
vertical, first and second diagonals). The images cal-

culated for horizontal and vertical directions were 
also combined to one magnitude image (scalar prod-
uct of the two directions). The genetic based variable 
selection of Predict was used to select significant 
variables for input in the neural network. 

Table 2 shows the results of the two per-pixel 
classifiers, for each training strategy and for the dif-
ferent combinations of input data. The table lists the 
Kappa indices (Rosenfield & Fitzpatrick-Lins, 1986) 
calculated on the validation pixels. The “spectral” 
scenario includes the four multispectral image bands 
and the derived NDVI band. The “PAN” scenario 
includes the same bands plus the panchromatic band. 
The texture scenario includes all bands from “PAN”, 
plus the selection of texture channels chosen by Pre-
dict’s variable selection. For “atypical” these are 
ASM in the horizontal direction with window size 
11 (ASM-hor-11), ENT-hor-5, IDM-hor-11. For the 
“typical” training set, only ASM-hor-11 was se-
lected. For “polygon”: ASM-1

st
 diagonal-11, ENT-

hor-11, IDM-vertical-5, ENT-magnitude-11 and 
IDM-magnitude-11. 

Table 2. Kappa indices for all per-pixel classification scenarios  

samples  NN  ML 
  spec-

tral
PAN tex-

ture
 spec-

tral
PAN

typical  0.74 0.75 0.74  0.77 0.77 
a-typical  0.73 0.79 0.83  0.77 0.79 
3x3  0.77 0.81 0.81  0.77 0.78 

From the table we see that the strategy that uses a 
neural network classifier, trained with both typical 
and a-typical pixels and with texture added to the 
spectral input channels, provides us with the highest 
Kappa index (0.83). This classification is shown in 
figure 4 for a small subset of the study area. 

Figure 4. Neural network classification with typical and a-
typical training, and with texture added to the spectral input 
channels

Compared with the ML classifier the NN seems very 
sensitive to the selected input bands and to the type 
of training data. Using both typical and atypical 
training data seems to yield the best results. Adding 
the PAN image band and texture increases the per-
formance compared with the scenario where only 
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spectral image information is used. Compared with 
the “a-typical” training scenario the 3x3 block train-
ing does not perform much better. We therefore de-
cided to omit the 3x3 scenario from our future re-
search.

Table 3. Kappas per land-cover class for the best per-pixel 
classification scenario  

The per-class Kappas for the best approach are 
shown in table 3. Glass appears to cause most prob-
lems in the classification. This is probably due to the 
fact that glass or plastic do not have typical signa-
tures because of the differing incidence angle of the 
sun. They are often confused with other surface ma-
terials . 

3.2 Object-oriented classification 

Multi-resolution image segmentation (Baatz & 
Schäpe, 2000) is the first step in object-oriented im-
age analysis with the eCognition software. This re-
gion growing technique starts from objects with the 
size of one pixel. Then it subsequently merges adja-
cent image objects into bigger ones with a procedure 
that minimizes the weighted heterogeneity criterion 
of the newly created image objects. The criterion is 
set by the user before starting the segmentation 
process. The weight is equal to the object’s size. The 
merging of a region stops when no neighbour can be 
joined without exceeding the threshold. Because of 
its higher resolution, in this study the PAN image 
was chosen to obtain the image primitives. Real im-
age objects have a more identifiable shape and 
higher spatial contrast in this band.

In a second step, the image primitives that were 
obtained from the segmentation were classified us-
ing the PAN band, the four multi-spectral bands and 
an NDVI image. We used two training sets: the one 
with only the typical pixels and the one with both 
typical and a-typical pixels. The training pixels were 
overlaid with the segments to obtain training seg-
ments for the nearest neighbour classifier embedded 
in eCognition. In an attempt to improve classifica-
tion performance we also added extra information in 
the form of brightness and ratio neo-channels. 
Brightness of an object is defined as the sum of the 
mean reflectance values of this object in all bands. 
The ratio of an object for a certain image band is the 

object’s mean reflectance value divided by the sum 
of its mean reflectance values in all other bands.  

An optimal setting for the heterogeneity criterion 
(scale factor of 4.7) was chosen by evaluating its 
impact on classification accuracy. Figure 5 shows 
the effect of the scale factor on classification per-
formance. Other criterion settings (colour, shape, 
smoothness, compactness) were left at their default 
levels.

Figure 5. Effect of scale parameter size (x-axis) on classifica-
tion performance (Kappa on y-axis).  

The results of the classifications with this optimal 
segmentation level are listed in table 4. 

Table 4. Kappas for eCognition scenarios 

samples  eCognition 
  spec-

tral
PAN Brightness + 

ratio
typical  0.71 0.79 0.79 
a-typical  0.71 0.80 0.82 

Just as for the per-pixel approach, using only 
spectral data in the classification yields the worst re-
sults. Adding the PAN band causes a steep increase 
of Kappa. Adding additional information like bright-
ness and ratio calculations results in only slightly 
better classifications. Figure 6 shows the best result 
of the eCognition approach. From table 5 we learn 
that the glass or plastic class causes the same prob-
lems as for the per-pixel based approach. 

Figure 6. eCognition classification with typical and a-typical 
training, and with brightness and ratio calculations added to the 
spectral input channels 

Land-cover class Kappa 
index

Red surface 0.83 
Glass or plastic 0.55 
Water 0.85 
Grass 0.94 
Shrub and trees 0.88 
Light grey 0.94 
Medium grey 0.81 
Dark grey 0.83 
Shadow 0.84 

70.0%

75.0%

80.0%

85.0%

10 5 4.8 4.7 4.6 4.5 4.3 4.2
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Table 5. Kappas per land-cover class for the best eCognition 
classification scenario 

4 FROM LAND COVER TO LAND USE 

Thematic maps obtained by a classification of urban 
surface types can in most cases not be directly used 
for urban and regional planning or management. 
Planners or decision makers typically need maps that 
show urban objects (e.g. houses). They are usually 
less interested in the constituent elements of these 
objects (e.g. red surfaces, grey surfaces). Therefore, 
we need techniques to derive object-level informa-
tion from the land-cover classifications. We also 
need to deal with the inherent problems of a land-
cover classification, i.e. shadows, and especially for 
pixel-by-pixel classifications, with the “salt-and-
pepper effect”. 

As a first test to derive meaningful information 
from land-cover classification results, we applied a 
rule based procedure on the best neural network 
land-cover classification of the study area. In this 
test we mainly focused on the identification of build-
ings and artificial surfaces.  

First, we added information on elevation, derived 
from the digital surface model (DSM) that was cre-
ated for ortho-rectification. With an empirically de-
termined threshold of six meters we split each of the 
nine land-cover classes in two altitude levels: ground 
level (< 6m) and building level (>6m). The threshold 
was kept uniform for the entire area because of the 
sparse relief. After the split we also aggregated the 
three grey-level classes into one grey class. This 
theoretically results in a total of 14 land-cover 
classes.

After this preparatory work, we applied 9 spatial 
knowledge-based rules in sequence. The rules work 
on pixels that define a region, i.e. adjacent groups of 
pixels that belong to the same class.  

Let C = {c1, c2, c3,…ct} be the set of all possible 
land-cover types, L1 and L2 two mapping functions, 
defined by the neural network classifier, that assign 
each pixel to the class that corresponds to the highest 
activated node and to the second highest activated 
node respectively, and P a post-classification map-
ping function that re-defines a pixel’s class label 
based on knowledge-based rules.

Moreover, let A = {a1, a2,…an}|∀a ∈ A: L1(a) = 
ck and B = {b1, b2,…bm}|∀b ∈ B: L1(b) = cl be two 
adjacent regions with all n (m) pixels allocated to 
classes ck and cl respectively, which we can shortly 
write as follows: L1(A) = ck and L1(B) = cl.

Using these definitions, the rules that have been 
applied are of two forms: 

IF L1(A) = ck AND L1(B) = cl THEN ∀a ∈ A: P(a) = 
cl

IF L1(A) = ck AND L1(B) = cl THEN ∀a ∈ A: IF 
L2(a) = cl THEN P(a) = cl ELSE P(a) = ck

Figure 4 shows an example of each type of rule. The 
first rule in this example is used to merge glass and 
reflecting surfaces above 6 meters with adjacent re-
gions of the grey roof type. The second rule reduces 
the amount of shadow on regions that actually are 
shrub. A similar rule is applied to remove shadows 
from grey surfaces at ground level. 

We also applied a structural filter to clean up the 
map at intermediate steps between the sequential 
executions of the rules. This filter uses an area 
threshold of 16 pixels to assign all smaller regions to 
the largest neighbouring region.

Figure 7. Examples of knowledge-based rules 

Applying the rules and the filter significantly im-
proves the structure of the classified image and al-
lows us to extract buildings as well as artificial sur-
faces at ground level. We were also able to remove a 
large part of the shadows, as can be seen from a 
comparison between fig. 8 and fig. 9.  

By overlaying the identified roofs with the build-
ing outlines from the visual interpretation (fig. 10), 
we can visually assess the quality of the result. Most 
buildings are well identified, although some small 
ones are not. Also, the shape and extent of the build-
ings is not always correct. This is mostly due to er-
rors in the DSM near the borders of the buildings. 
The buildings that are identified in the eastern part 
of fig. 10 are located outside the visually interpreted 
area.

Land-cover class Kappa 
index

Red surface 0.88 
Glass or plastic 0.58 
Water 0.88 
Grass 0.85 
Shrub and trees 0.81 
Light grey 0.97 
Medium grey 0.81 
Dark grey 0.84 
Shadow 0.78 

(1) IF region = “glass at building level” 

AND neighbouring region = “grey class

at building level” THEN add all pixels in 

region to “grey class at building level” 

(2) IF region = “shadow at ground level” 

AND neighbouring region = “shrub at 

ground level” THEN add pixel in region

to “shrub at ground level” IF second 

most prominent class for the pixel is 

shrub
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Figure 8. Original neural network classification 

Figure 9. Classification result after applying knowledge-based 
rules and structural filtering 

Figure 10. Overlay of building edges from the visual interpreta-
tion with roofs detected with the rule-based procedure.

In the future we will refine the technique that is 
proposed in order to enable and improve the extrac-
tion of different types of urban objects. 

5 CONCLUSIONS AND FUTURE WORK 

From the tests we did we cannot conclude unambi-
guously that one type of classifier is preferable over 
the other. The Kappa indices of the best per-pixel 
scenario and the best object-oriented scenario are not 
significantly different. Also visually, we cannot un-
equivocally state which classifier performs best. 
Some classes appear more structured using eCogni-
tion, others do not. 

In the near future we will refine the procedures 
we used here by applying them on four other test 
zones in Ghent and on study areas in the cities of 
Brussels and Liège. For these two cities other meth-
ods will need to be developed to insert information 
on the height of objects into the rule-based proce-
dure because of the more pronounced relief there. 
Depending on the outcome of an in-depth user sur-
vey we also plan to develop EO-based applications 
aimed at fulfilling specific user needs. 
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