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ABSTRACT: Empirical-statistical methods are widely used to estimate bio-physical canopy variables like 
LAI or canopy chlorophyll content from remotely sensed spectral data. To gain more insight into different
approaches, it was decided to intercompare three important linear empirical-statistical methods for their abil-
ity to estimate LAI and canopy chlorophyll content from hyperspectral ground reflectance measurements: (i)
partial least squares regression (PLSR), (ii) principle component regression (PCR), and (iii) stepwise multiple
linear regression (SMLR). Results obtained on a multi-temporal winter wheat data set revealed that PLSR
gave the best results, followed by classical SMLR. On the other hand, the use of PCR can not be recom-
mended. The superiority of PLSR compared to SMLR and PCR was explained by the fact that PLSR unifies 
their advantages, without owning their disadvantages: (1) since PLSR is a “full spectrum” method, noise sen-
sitivity is relatively small compared to SMLR, and (2) since data compression in PLSR considers covariance
to the desired bio-physical variables, PLSR performs much better than PCR. 

1 INTRODUCTION

The retrieval of bio-physical variables from multi- or 
hyperspectral, ground-, airborne and satellite based 
reflectance measurements, is one main area of re-
search at our lab. Involved methods include empiri-
cal-statistical approaches (including artificial neural 
nets) (Atzberger & Schlerf, 2002; 2003; Jarmer et 
al., 2003), and the inversion of radiative transfer 
models (Atzberger, 1995; 1997; 2000; 2002; 2003; 
Atzberger et al., 2003; Schlerf & Atzberger, 2002; 
Schlerf et al., 2003; Udelhoven et al., 2000). The re-
trieved bio-physical variables are useful indicators 
for land users with strong environmental impact, 
e.g., agriculture and forestry. 

The repetitive mapping of bio-physical variables 
on a small pixel resolution is for example needed in 
precision farming and forest inventory and model-
ing. In the concept of precision farming, mapping of 
bio-chemical (e.g. leaf chlorophyll content) and 
structural variables (e.g. LAI) may help to assess nu-
trition status and plant development. The maps can 
be transfered into management recommondations 
and decisions that sustain productivity at reduced 
environmental costs (Schueller, 1992; Moran et al., 
1997; Hatfield & Pinter, 1993). Likewise, the map-

ping of forest related variables can be integrated into 
forest inventories (and GIS) since the bio-physical 
variables allow an assessment of forest health and 
productivity (Schulze, 2000; Franklin, 2001; How-
ard, 1991; Lucas & Curran, 1999; Treitz & Howarth, 
1999). Since vegetation plays a major role in the 
global gas and energy exchange, the mapping of 
variables with high physiological and photochemical 
relevance is also recommended in the research re-
lated to global change (Sellers et al., 1995). 

The bio-physical variables can be assessed quan-
titatively by means of physically based approaches 
(i.e. the inversion of radiative transfer models) (e.g. 
Jacquemoud et al., 1995; Bicheron & Leroy, 1999), 
or by means of empirical-statistical methods (e.g. 
Curran, 1989; 1994; Rondeaux, 1995). In either 
case, the approaches have to be suitable for multicol-
linear data – at least when dealing with hyperspec-
tral data sets. From a scientific viewpoint, the radia-
tive transfer based approach is generally prefered 
over the empirical-statistical approach, because it al-
lows more physical insight into the system behavior 
(Goel, 1987). This implicitely adds valuable benefits 
in overall adaptability (e.g. transfer to all kinds of 
environmental conditions and vegetation types). 
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Though empirical-statistical methods do not pro-
vide any system insight, they nevertheless have an 
eligibility. For example, one way to evaluate the 
quality of a radiative transfer model is to compare its 
predictive power against elaborated empirical-
statistical methods (Kimes et al., 1998). Because of 
their unreached and unlimited function approxima-
tion capability, artificial neural nets (ANN) are 
prime candidates for such empirical benchmark 
models. However, when dealing with typically small 
calibration and validation data sets (<100 samples), 
the proper use of ANNs requires great care to avoid 
overfitting. In these cases, the use of linear regres-
sion models can be helpful. 

To gain more insight into different empirical-
statistical methods, it was decided to intercompare 
three important linear empirical-statistical methods, 
known to be well suited for dealing with small, 
highly multicollinear data sets: (i) partial least 
squares regression, (ii), principal component regres-
sion, and (iii) stepwise multiple linear regression. 
The suitability of the different methods will be ana-
lyzed in terms of absolute prediction accuracy, and 
in terms of (unwanted) noise sensitivity. The signifi-
cance of the results is naturally limited to the case 
crop studied (winter wheat) and the two bio-physical 
variables considered (LAI and canopy chlorophyll 
content).

2 GROUND TRUTH DATA 

Four times during the 1999 growing season (Day of 
Year 119, 130, 162 and 180), four commercial win-
ter wheat fields in the Trier area were analyzed (ex-
cept DoY 119 where only three fields were probed) 
(Fig. 1). 
In each wheat field, three subplots (0.25 m

2
) were 

considered for biological and spectroradiometric 
measurements. Thus, in total, 45 corresponding 
spectral and biological measurements were acquired 
(for more details see also Jarmer et al., 2003; Atz-
berger et al., 2003). 

Figure 1. The location of the study region Trier within Ger-
many and test site “Bitburger Gutland” NW of Trier. 

2.1 Reflectance measurements 

The top of canopy reflectance (ρ) was measured 
with an ASD Field Spec II spectroradiometer from 
an height of about 1.5 m above ground during favor-
able weather conditions around solar noon. ASD 
readings were normalized to bi-directional reflec-
tance by means of a spectralon reference panel of 
known reflectivity. Integration time was set to 10 
seconds. For each sub-plot, five reflectance readings 
were taken and an average spectrum was calculated. 
A moving (± 5 nm) Savitzky-Golai filter (Savitzky 
& Golai, 1964) was applied to the reflectance spec-
tra to eliminate sensor noise. Resampling of field 
spectra to the central wavebands of the HyMAP sen-
sor ensured application of calibrated models to Hy-
MAP imagery. 

Spectral offsets can be removed using spectral de-
rivatives (Demetriades-Shah et al., 1990). Therefore, 
the reflectance data were transformed into “1

st
 de-

rivatives”, which were then normalized to mean of 0 
and standard deviation of 1. The first derivative was 
simply calculated as the reflectance difference be-
tween adjacing spectral bands. Only these normal-
ized derivatives were used throughout this study. 

2.2 Biological measurements 

2.2.1 LAI
On exactly the same positions within the wheat plots 
where the canopy reflectance was measured, the 
above-ground plant material was harvested within 
the 25 x 25 cm sub-plots and brought to the labora-
tory. There – using a commercial planimeter – (one-
sided) plant surface of the fresh material was deter-
mined and used to calculate the leaf area index (LAI; 
m

2
 m

-2
).

2.2.2 Canopy chlorophyll content 
Chlorophyll measurements were not taken for each 
sub-plot, but only for entire fields. At each meas-
urement date, 30 wheat plants per field were ran-
domly selected and SPAD readings from the upper 
leaves were taken. These SPAD readings were con-
verted into leaf chlorophyll contents by means of an 
empircal calibration function provided by Markwell 
et al. (1995). From the 30 individual leaf chlorophyll 
measurements, the average was calculated and mul-
tiplied by the corresponding LAI to obtain the total 
canopy chlorophyll content for each sub-plot (LAI x 
CAB; mg m

-2
). Since the variability of the leaf chlo-

rophyll content was relatively small compared to the 
LAI variability, canopy chlorophyll content and LAI 
show a strong positive correlation (not shown). 
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3 METHODS 

Using the multi-temporal empirical data set (Sect. 
2), three linear empirical-statistical methods were 
analyzed in a comparative way: 

(i) partial least squares regression (PLSR) 

(ii) principal component regression (PCR) 

(iii)stepwise multiple linear regression (SMLR) 
The methods were selected because they are known 
to be suitable for small, multicollinear spectral data 
sets. PLSR and PCR are “full-spectrum” methods 
since they use all available wavelengths simultane-
ously. SMLR selects useful wavelengths from the 
available spectrum; other wavebands are not consid-
ered.

The analysis refers to the estimation of leaf area 
index (LAI) and canopy chlorophyll content (LAI x 
CAB) (see Sect. 2). The suitability of the different 
methods will be analyzed in terms of absolute pre-
diction accuracy, and in terms of (unwanted) noise 
sensitivity. Inputs to the empirical-statistical models 
were 1

st
 derivatives of ground reflectance measure-

ments resampled to the hyperspectral HyMAP sen-
sor (127 spectral channels between 450 and 2500 
nm). To be fully intercomparable, the number of re-
gression factors was fixed to four for all methods. 

We will first provide a matrix operation oriented 
overview, following the excellent work of Martens 
& Naes (1987) (Sect. 3.1). Next, we describe meth-
odological details referring to the adopted statistical 
sampling strategy. In Section 3.3 we present the sta-
tistical accuracy indicators used to assess the predic-
tive power of the different methods. In Section 3.4 
finally, we specify the way we assessed the noise 
sensitivity of the different methods. 

3.1 The empirical-statistical models 

According to Martens & Naes (1987), the calibration 
of empirical-statistical models consists of two stages 
(Fig. 2): 
(1) the compression stage, where the spectral data 
matrix (X) is compressed into a small number of ba-
sic variables (nT<<nλ), termed regression factors, T, 
and

Figure 2. Schematic presentation of the general data model ex-
pressed in condensed matrix form (Martens & Naes, 1987). In 
the compression stage, the spectral data are compressed into a 
small number of regression factors. In the calibration regres-
sion, regression factors are related to the bio-physical variable. 

(2) the calibration regression, where regression rela-
tionships are established between the regression fac-
tors, T, and the bio-physical variable, c.

Data compression gives certain estimated pa-
rameters, loading spectra, P, that define how the val-
ues of the regression factors, T, are to be calculated. 
The calibration regression produces estimated pa-
rameters, bio-physical loadings, q, that define how 
the bio-physical variable, c, is determined from the 
regression factors. Spectral (P) and bio-physical 
loadings (q) combine mathematically to yield the 
calibration coefficients for analysis of unknown 
samples (Martens & Naes, 1987). 

The way P and T are estimated is different for the 
three methods, but q is found always by least square 
using T. Since in all methods, T is a linear combina-
tion of the spectral values, the bio-physical variable, 
c, can consequently be obtained from an ordinary 
linear prediction equation. All approaches assume 
centered spectral and bio-physical data. 

3.1.1 Partial Least Squares Regression (PLSR) 
PLSR is a widely used approach in chemometry 
(e.g. Beebe et al., 1998) but much less employed in 
remote sensing. The method is particularly suited for 
calibration on a small number of samples with ex-
perimental noise in both bio-physical and spectral 
data. In addition, the method can be used even if nλ
> nobs.

In PLSR, the first loading spectra (i.e., the first 
row of P) is estimated by matrix operation involving 
X and c. The solution is then scaled to length 1 and 
the first column of the regression factor matrix, T, is 
estimated from the spectral data, X, and this first 
loading vector, P. Through ordinary (multiple) linear 
regression, the bio-physical loadings, q, are deter-
mined and residuals of the bio-physical variable are 
computed. With these residuals, the above described 
calculations are repeated for the second regression 
factor, and so on. 

The resulting PLSR factors, therefore describe 
important variations in the spectral data themselves 
but at the same time are relevant for determination 
of the bio-physical data. This may be expected to 
lead to more efficient data compression and thus bet-
ter calibration, compared to other linear empirical-
statistical methods. 

3.1.2 Principal Component Regression (PCR) 
Data compression in PCR uses the spectral singular 
value decomposition of the spectral data to estimate 
both T and P. Given the centered spectral matrix, X, 
the first regression factor, T, and the first loading 
spectra, P, are estimated so that their product ac-
counts for as much as possible of the total variation 
in the spectral data. The next vectors of T and P are 
then chosen such that the regression factors are or-
thogonal to each other while accounting for a maxi-
mum of the remaining spectral variance. Thus, the 
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main spectral variation is described by a few or-
thogonal regression factors. The factors obtained in 
this way (here the first four) are then used to calcu-
late the bio-physical loading vector, q, in a subse-
quent calibration regression stage. 

Notice that PCR as described here deletes small 
eigenvalues. Other versions of PCR that delete ei-
genvectors because of predictive relevance are also 
possible but not considered here. Since it is not pos-
sible to calculate principle components when the 
number of wavelengths is higher than the number of 
observations (i.e. nλ > nobs), only each third deriva-
tive wavelength was used for analysis. 

3.1.3 Stepwise Multiple Linear Regression (SMLR) 
Although SMLR is not a full-spectrum method like 
PLSR or PCR it may still be presented under the 
general framework of Section 3.1. The data com-
pression stage of this method consists in selecting a 
combination of a few spectral bands as regression 
factors, T. The regression factor matrix is then used 
to calcuate the bio-physical loadings, q, by ordinary 
least square. 

In the present study, the derivatives were first re-
gressed sequentially against the bio-physical vari-
ables. The derivative with the highest explained 
variance was then chosen as the first regression fac-
tor. With this first regression factor fixed, the next 
derivative was chosen, and so on. No forward or 
backward elimination was allowed. 

3.2 Statistical sampling 

In cases where many samples are available (i.e. nobs 

>100), a meaningful statistical evaluation of statisti-
cal models consists in dividing the whole data set 
into one set of samples used for calibration and the 
remainder used for independent validation. How-
ever, when dealing with small data sets (here: nobs =
45), such a stationary division into calibration and 
validation samples must lead to biased accuracy in-
dicators, because sample division is to some degree 
arbitrary. The standard approach is to perform a so 
called cross-validation, where each sample is esti-
mated by the remaining samples (i.e. the “leave-one-
out method”). However, this does not allow to assess 
the stability of the resulting statistical indicators 
(e.g., R

2
 and RMSE). The statistical accuracy was 

therefore not only assessed by cross-validation (Sect. 
3.2.1), but also by randomized bootstrapping (Sect. 
3.2.2).

3.2.1 Cross-validation
Cross-validated statistics were calculated from esti-
mates which were derived according to the “leave-
one-out method” – that is each and every sample is 
estimated by means of an empirical-statistical model 
which was calibrated using the remaining (44) sam-
ples.

3.2.2 Randomized bootstrapping 
Cross-validated results do not give any indication 
about the expected variability of the provided accu-
racy indicators. For this reason, the prediction accu-
racy of the different methods was also assessed by 
dividing the data set into 2 sub-data sets: 2/3 of the 
samples were used for model calibration and the re-
maining 1/3 for model validation. Separation into 
calibration and validation sub-sets was repeated 20 
times in a random way. This yields frequency distri-
butions of the accuracy indicators which are useful 
to assess model accuracy and stability. Results refer-
ring to the randomized bootstrapping will be dis-
cussed in Section 4.2. 

3.3 Statistical indicators 

To assess the prediction accuracy of the different 
methods, two classical statistics were calculated: R

2

and RMSE. In the case of cross-validation, these sta-
tistics were calculated from the nobs=45 samples, 
where each sample was estimated by the remaining 
44 samples (Sect. 3.2.1) (R

2
cv, RMSEcv). The statis-

tics using randomized bootstrapping were calculated 
each time a random division of the data set into cali-
bration (2/3) and validation (1/3) samples was per-
formed. From the resulting frequency distributions, 
the median value was calculated (R

2
rb, RMSErb).

3.4 Noisy data 

The influence of sensor noise on the stability of the 
empirical-statistical approaches was assessed using 
degraded spectral data sets. The models were first 
calibrated on the original spectral data. Then, a 
“white” (i.e. wavelength independent) Gaussian 
noise component (mean of zero) was added to the 
data set and the formerly calibrated models were 
used to estimate the bio-physical canopy variables. 
We applied noise levels with standard deviations of 
0.0001, 0.0005, 0.001, 0.005, and 0.01 reflectance 
units. For comparison, a noise level of 0.001 corre-
sponds for a typical vegetation spectrum to a signal-
to-noise ratio (SNR) between 50:1 (red) and 500:1 
(nIR).

4 RESULTS 

4.1 Cross-validated predictions 

For both bio-physical variables, the PLSR gave the 
highest accuracies (Fig. 3 and Tab. 1). The left hand 
side of Fig. 4 shows the ground measured and esti-
mated canopy chlorophyll contents (LAI x CAB) ob-
tained by this method. The cross-validated R

2
 is 0.85 

with an RMSE of 51 mg m
-2

. This corresponds to a 
relative accuracy (RMSECAB/∆CAB) smaller than 
10%. Prediction accuracy was similar for LAI (right 
hand side of Fig. 4). 
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Figure 3. Cross-validated coefficients of determination (R2)
(left) and root mean square errors (RMSE) (right) between 
ground measured and estimated leaf area index  and canopy 
chlorophyll content for the three empirical-statistical methods 
analyzed.

Figure 4. Ground measured versus estimated bio-physical vari-
ables using partial least squares regression (PLSR): (left) can-
opy chlorophyll content; (right) leaf area index. Estimates were 
obtained by cross-validation. 

Comparing the different methods, the worst re-
sults were obtained by PCR, whereas SMLR gave 
acceptable results (Tab. 1). 

4.2 Predictions obtained by randomized 
bootstrapping

The above presented cross-validated results indicate 
only the overall accuracy of the different methods. 
In contrast, the randomized bootstrapping also al-
lows to assess the stability of the prediction equa-
tions (see Sect. 3.2.2). Results obtained using this 
statistical sampling strategy are summerized in Ta-
ble 1. 

Figure 4 shows the frequency distributions of the 
coefficient of determination (R

2
) between measured 

and estimated bio-physical variables when division 
in calibration and validation samples is repeated 20 
times in a randomized way. The strong spreading 
evident for all methods is an indication that an arbi-
trary (stationary) division of such small data sets in 
calibration and validation samples will lead to 
strongly biased results. 
The additional information provided by the random-
ized bootstrapping is for example evident when 
comparing PLSR and SMLR for their ability to es-
timate canopy chlorophyll content (Fig. 5). Whereas 
almost no differences are seen in the cross-validated 
results (arrows), the frequency distributions obtained 
by randomized bootstrapping reveal a better per-
formance of PLSR compared to SMLR. 

Figure 5. Frequency distributions of the coefficient of determi-
nation (R2) between measured and estimated canopy chloro-
phyll content (left) and leaf area index (right) obtained by ran-
domized bootstrapping. Thirty out of fourty five samples were 
used for calibration, the remaining for validation. Arrows indi-
cate the corresponding R2 values obtained by cross-validation. 

Table 1. Statistics (R2 and RMSE) between estimated and 
measured leaf area index and canopy chlorophyll content for 
the three empirical-statistical methods analyzed: (top) cross-
validated statistics, (bottom) statistics obtained by randomized 
bootstrapping (median of the obtained frequency distributions). 

  LAI LAI x CAB 

  PLSR MSLR PCR PLSR MSLR PCR 

R2 0.85 0.71 0.62 0.85 0.79 0.57 cv
 RMSE 0.91 1.27 1.44 51 60 82 

R2 0.82 0.76 0.67 0.80 0.76 0.65 rb
 RMSE 1.13 1.25 1.48 68 71 82 

4.3 Noise sensitivity 

Strong differences between the three methods were 
obtained concerning the noise sensitivity (Fig. 6). 
Particularily for SMLR, the estimation accuracy 
strongly degrades with increasing noise levels. PCR 
(and to a lesser extent PLSR) are much less sensitive 
to “white” noise. 

5 DISCUSSION 

Main differences between the three methods can be 
seen in Figure 7, where the explained variances in 
the spectral and bio-physical data are shown for the 
first four regression factors. 
Principle component regression (PCR) concentrates 
the reflectance data only in terms of statistical prop-
erties. If important parts of the reflectance variability 
are due to external effects not included in the regres-
sion equation, this unwanted variance (for example 
due to soil brightness variations) will be concen-
trated in the first principle components, and thus will 
be included in the empirical model. Minor, but im-
portant factors of variability, will accordingly be 
placed into the last principle components. Therefore, 
the prediction accuracy of the PCR in multivariate
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Figure 6. Noise sensitivity of the three empirical-statistical 
methods in the estimation of the canopy chlorophyll content 
expressed as a function of the standard deviation of the added 
“white” noise component: (left) R2, (right) RMSE. 

regressions of spectral data with bio-phyiscal canopy 
variables was lower compared to the two other in-
vestigated methods.The sole advantage of PCR is 
the relative insensitivity to “white” sensor noise. 

This advantage of the PCR is at the same time the 
major disadvantage of classical stepwise multiple 
linear regression (SMLR). Since SMLR is not a “full 
spectrum” method, like PCR and PLSR, sensor noise 
has little chance to cancel out. On the other hand, 
SMLR can easily identify the spectral regions which 
are less affected by unwanted external factors and 
which enable the establishment of a powerful multi-
variate regression equation. 

The partial least squares regression (PLSR) uni-
fies in a simple and comprehensive manner the ad-
vantages of previous approaches without owning 
their disadvantages: (1) due to the fact that PLSR is 
a “full spectrum” method, noise sensitivity is rela-
tively small compared to SMLR, and (2) since data 
compression into regression factors considers co-
variance to the desired bio-physical variables, PLSR 
performs much better than PCR. 

Figure 7. Explained variance in the dependent variable (LAI) 
and derivative data (p’) for the three empirical-statistical meth-
ods and regression factors one to four. Lines are only to clarify 
the appearance of data points. 
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