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ABSTRACT: This paper presents a novel image fusion method, suitable for sharpening
of multispectral (MS) images by means of a panchromatic (Pan) observation, based on a
modified generalized intensity-hue-saturation algorithm: the MS bands expanded to the
finer scale of the Pan image are sharpened by adding the spatial details derived from a
difference image, which is calculated by the Pan image and a linear combination of the
MS bands. Since a direct, unconditioned injection of Pan details gives unsatisfactory
results, a new injection model is proposed, which provides the optimum injection by
maximizing a global quality index of the fused product. The optimum injection is driven
by an index function capable to measure radiometric, geometric and spectral distortions
in the fused images. Fusion tests are carried out both on spatially degraded data to
objectively compare the proposed scheme to the most promising state-of-the-art image
fusion methods (included two commercial software solutions), and on full resolution
image data to visually assess the performance of the proposed genetic image fusion
method.

1 INTRODUCTION

Spaceborne imaging sensors allow a global coverage of the Earth surface to be achieved
on a routine basis. Multispectral (MS) observations, however, exhibit ground resolutions
that may be inadequate to specific identification tasks especially when urban areas are
concerned. After the successful launch of the new generation of satellite imagers, e.g.,
Ikonos, QuickBird, and SPOT-5, very high-resolution MS and panchromatic (Pan)
images are made available.

Data fusion techniques, originally devised to allow integration of different information
sources, may take advantage of the complementary spatial/spectral resolution character-
istics for producing spatially enhanced MS observations. This specific aspect of data fusion
is often referred to as data merge (Scheunders 2001) or band-sharpening (Kumar et al.
2000). More specifically, Pan-sharpened MS is a fusion product in which the MS bands are
sharpened via the higher-resolution Pan image. In fact, the latter is acquired with the
maximum resolution allowed by the imaging sensor, as well as by the datalink throughput,
while the former are acquired with coarser resolutions, typically, two or four times lower,
because of SNR constraints and transmission bottleneck. After being received at ground
stations, the Pan image may be merged with the MS data to enhance their spatial resolution.

The description of the proposed fusion algorithm is organized as follows. Section 2
deals with the image analysis tools used in the proposed Pan-sharpening algorithm with
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emphasis on the structure of the sharpening model and the quality evaluation criterion.
In section 3 a general GA scheme is described, based on floating point representation of
chromosomes and on genetic operators borrowed from the most promising studies on
genetic algorithms (GA). How the GA is used to regulate the Pan injection is explained
in section 4. Experimental results and comparisons are presented and discussed in
section 5 on Quickbird data set. Conclusions are drawn in section 6.

2 IMAGE ANALYSIS

2.1 Structure of the Pan-sharpening model

The definition of a suitable model for the injection of Pan details is a crucial point for a
good quality of the data fusion product. The most promising methods have developed
different models, generally related to a common approach that consists of calculating the
parameters that regulate the injection (typically gain and offset) at a coarser resolution
and then adopting those parameters to the finer resolution. This means that the scale
persistence is exploited supposing that the characteristics of edges and texture at coarser
scales are not too much different from the finer scales. This hypothesis is verified if the
ratio between the spatial resolutions of MS and Pan data is not too high and if the model
is opportunely defined. Some successful techniques, Spectral Distortion Minimization
(SDM) (Alparone et al. 2003), Context Based Decision (CBD) (Aiazzi et al. 2002),
Ranchin-Wald-Mangolini method (RWM) (Ranchin et al. 2003), have developed
interesting models in which the Pan injection is regulated by the ratio between the
standard deviations of the MS and Pan data, or by the first moment of inertia.

The problem that generally occurs when applying those fusion techniques is that the
definition of the model parameters does not correspond to an optimum choice in terms
of geometric, radiometric and spectral distortions of the fused product. Besides, the
definition of a local model often gives rise to numerical instability and unsatisfactory
visual quality throughout the image.

The proposed Pan-sharpening algorithm applies a Generalized Intensity-Hue-
Saturation (GIHS) transformation to the MS bands, (Chibani 2002). The GIHS is a
linear transform which yields the generalized intensity GI

GI ¼
XN

l¼l

al
fMSl (1)

with fMSl denoting the expanded MS images. Only the GI component is used to extract
the high-frequency spatial details from the Pan image:

D ¼ P� GI (2)

with P the Pan image.
The injection model is a simple linear model in which the coefficients that equalize

the Pan image are derived globally – one for each band- from coarser scales, similarly to
previous schemes such as SDM, CBD and RWM, but not a-priori defined on image
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statistics, e.g., variance, mean, correlation coefficient, etc. The fused l-th MS band is
computed as

cMSl ¼ fMSl þ gl � D (3)

and a genetic algorithm is applied to determine the al coefficients of eq.(1) and the gl

gains of eq.(3) that maximize an image quality score index described in the next
subsection.

The goal of the GA is to find the best combination of the 2N real coefficients al and
gl, l ¼ 1; . . . N; according to an objective criterion that describes the enhancement of the
MS images. The representation of the GA chromosomes is therefore a string of 2N real
numbers (8 coefficients in the case of QuickBird image data set). The representation of
the chromosomes is therefore a string of real numbers as reported in eq.(4).

Chromosome c: g1; g2; g3; �; �; �; gN ; a1; a2; a3; �; �; �; aNf g (4)

2.2 Quality evaluation criterion

The image quality index Q4 for multispectral images having four spectral bands can be
calculated on Pan-sharpened MS images as described in (Alparone et al. 2004). The
index Q4 is derived from the theory of hypercomplex numbers, in particular of
‘‘quaternions’’, which can be represented in the form a = a1 + a2 i + a3 j + a4 k, where a1,
a2, a3, a4 are real numbers, and i 2 = j 2 = k 2 = i j k = �1. For MS images with four
spectral bands, typical for new generation satellite images, a1; a2; a3; a4 represent the
values assumed by a given image pixel in the four bands, acquired in the Blue, Green,
Red and Near Infrared wavelengths.

The unique score index Q4 for 4-band MS images, which assumes a real value in the
interval [0,1], is a generalization of the Q index defined in (Wang 2002) and is equal to 1
iff the MS image is identical to the reference image. Q4 is made up of different
components (factors) to take into account for the correlation, the mean of each spectral
band, the intra-band local variance, and the spectral angle. The first three factors are also
taken into account by Wang & Bovik’s index (Q) for each band while the spectral angle
is introduced by Q4 by properly defining a CC of multivariate data. In this way, both
radiometric and spectral distortions are considered by a single parameter.
The more Q4 approaches to unity, the higher becomes the radiometric and spectral
quality of the fused image. This suggests that this index can be used not only to evaluate
the performances of fusion algorithms, but also as a target function to be maximized in
order to compute optimal fusion parameters.

3 GENETIC COMPONENTS

Genetic algorithms (Davis 1991; Michalewicz 1994) are inspired by the evolution of
populations. In a particular environment, individuals which fit the environment better
will be able to survive and hand down chromosomes to their descendants, while less fit
individuals will become extinct. The aim of genetic algorithms is to use simple
representations to encode complex structures and simple operations to improve these
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structures. Therefore, genetic algorithms are characterized by their representations and
operators. A fitness function is defined which measures the fitness of each individual.
The populations are evolved to find good individuals as measured by the fitness function.
A GA flow diagram is shown in figure 1(a), and each of the major components is
discussed in the following sections. A GA requires the definition of these fundamental
steps: chromosome representation, selection of a function also called fitness function,
creation of the initial population, reproduction function, mutation and crossover
operators, termination criteria, and the evaluation of fitness function. The following
subsections describe these issues.

3.1 Chromosome representation

A chromosome representation is necessary to describe each individual in the GA
population. The representation scheme determines how the problem is structured in the
GA and also determines the genetic operators that are used. Each chromosome is made
up of a sequence of genes from a predefined alphabet. One useful representation of
chromosome for function optimization involves genes from an alphabet of floating point
numbers with values limited by an upper and a lower bound. It has been shown by
Michalewicz (Michalewicz 1994) that a real-valued GA is more efficient in terms of
CPU time and more accurate in terms of precisions for replications than binary GA
representations.

3.2 Reproduction

An important role in GA’s is the selection of individuals to produce successive
generations usually called reproduction. A probabilistic selection is performed based
upon the individual’s fitness such that the better individuals have an increased chance of
being selected. An individual in the population can be selected more than once with all
individuals in the population having a chance of being selected to reproduce into the next
generation.

Ranking methods, which produce best performances, require the evaluation function
to map the solutions to a partially ordered set and assign a probability of selection, Pi,
based on the rank of solution i when all solutions are sorted. Normalized geometric
ranking defines Pi for each individual by:

Pi ¼
qð1� qÞr�1

1� ð1� qÞPopSize
(5)

where q is the probability of selecting the best individual, PopSize is the overall number
of chromosomes and r is the rank of the individual, where 1 is the best.

3.3 Genetic operators

Genetic operators provide the basic search mechanism of the GA. The operators are used
to create new solutions based on existing solutions in the population. There are two basic
types of operators: crossover and mutation. Operators for real-valued representations,
i.e., an alphabet of floats, were developed in (Michalewicz 1994). Crossover takes two
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individuals and produces two new individuals while mutation alters one individual to
produce a single new solution. The application of these two basic types of operators and
their derivatives depends on the chromosome representation used. For real X and Y m-
dimensional vectors representing chromosomes, the following operators are defined:
uniform mutation, non-uniform mutation, multi-non-uniform mutation, boundary
mutation, simple crossover, arithmetic crossover, and heuristic crossover. Let ai and
bi be the lower and upper bound, respectively, for each variable i.

3.3.1 Mutation
Uniform mutation randomly selects one variable, j, and sets it equal to a uniform random
number bounded by ai and bi terms:

x0i
Uðai; biÞ if i ¼ j

xi otherwise

�
(6)

Boundary mutation randomly selects one variable, j, and sets it equal to either its lower
or upper bound, where r ¼ U (0,1):

x0i ¼
ai if i ¼ j; r < 0:5

bi if i ¼ j; r � 0:5

xi ¼ otherwise

8
><

>:
(7)

Non-uniform mutation randomly selects one variable, j, and sets it equal to a non-
uniform random number:

x0i ¼
xi þ ðbi � xiÞ r2 1� G

Gmax

� �� �b

i f r1 < 0:5

xi � ðxi þ aiÞ r2 1� G
Gmax

� �� �b

i f r1 � 0:5

xi otherwise

8
>>><

>>>:
(8)

where r1 and r2 are uniform random numbers between (0,1), G and Gmax are respectively
the current and the maximum number of generations, b is a shape parameter.
The multi-non-uniform mutation operator applies the non-uniform operator to all of the
variables in the parent X:

3.3.2 Crossover
Real-valued simple crossover generates a random number r from a uniform distribution
from 1 to m and creates two new individuals ðX0 and Y

0Þ according to equation (9).

x0iðy0iÞ ¼
xiðyiÞ if i < r

yiðxiÞ otherwise

�
(9)
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Arithmetic crossover produces two complimentary linear combinations of the parents,
where r ¼ Uð0; 1Þ:

X
0 ¼ rX þ ð1� rÞY (10)

Y
0 ¼ ð1� rÞX þ rY (11)

Heuristic crossover produces a linear extrapolation of the two individuals. This is the
only operator that utilizes fitness information. A new individual is created when X is
better than Y in terms of fitness. If the new individual is infeasible, i.e., there is at least a
new gene smaller than ai or bigger than bi; then generate a new random number r and
create a new solution. After t failures, the process is not repeated and the children is set
equal to parents.

3.4 Initialization, termination and fitness function

To start the search of the optimal solution by GA is necessary to provide an initial
population as indicated in figure 1(a). The most common method is to randomly
generate solutions for the entire population. The GA moves from generation to
generation selecting and reproducing parents until a termination criterion is met. A
maximum number of generations is commonly used to stop the GA search. Another
termination strategy involves population convergence criteria. Evaluation functions of
many forms can be used in a GA, subject to the minimal requirement that the function
can map the population into a partially ordered set. As stated in section (2.2), the
evaluation function to be optimized is Q4 which is particulary suited for minimizing
radiometric and spectral distortions.

3.5 Summary

The GA parameters selected for the optimization of Q4 are listed in table 1.
The interval of variation for the gi and ai parameters is the same for all bands and

spans in the interval [�10,10] and [0,10] respectively, in order to ensure a wide state
space. Each unknown parameter is spatially constant on the corresponding band i.
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Table 1. GA parameters used for real-valued Q4 function optimization.

Operation Parameters

Initial Population 200
Normalized Geometric Selection 0.05
Uniform Mutation 4
Non-Uniform Mutation [4, 100, 3]
Multi-Non-Uniform Mutation [6, 100, 3]
Boundary Mutation 4
Simple Crossover 2
Arithmetic Crossover 2
Heuristic Crossover [2, 3]
Maximum Generation 200
Chromosomes Bounds (for each band) gi : [�10, 10] �i : [0, 10]



4 DATA FUSION

Figure 1(b) outlines a procedure suitable for fusion of MS and Pan image data whose
scale ratio is 4. Before the injection process, the MS images are interpolated by 4 along
rows and columns, in order to process MS images having the same spatial scale of the
Pan image. The interpolator and decimator blocks are implemented applying twice the
upsamplingand downsampling operators.

To drive the injection of Pan data, the eq.(1), (2) and (3) are applied, with c
representing the best chromosome derived by the GA search. The Q4 index, which is
capable to measure distortions but requires as inputs the fused and the reference MS
images, is calculated at coarser resolution, i.e., at a resolution degraded by a factor equal
to 4. The GA, simulating the injection process at a degraded scale, is finally applied with
the parameters described in table 1.

5 EXPERIMENTAL RESULTS AND COMPARISONS

The proposed fusion procedures have been assessed on two very high-resolution image
data sets collected by Quickbird spaceborne MS scanner. The former is acquired on the
urban area of Rome. The four MS bands span the visible and near infrared (NIR)
wavelengths and are spectrally disjointed: blue ðB1 ¼ 450� 520 nmÞ, green ðB2 ¼
520� 600 nmÞ, red ðB3 ¼ 630� 690 nmÞ, and NIR ðB4 ¼ 760� 900 nmÞ. The PAN
band embraces the whole interval ðPan ¼ 450� 900 nmÞ. All the data have been
radiometrically calibrated from digital counts, orthorectified, i.e., resampled to uniform
ground resolutions of 2.8m and 0.7 m for MS and PAN, respectively, and packed in
16-bit words. The original PAN image is of size 1024� 1024 and the original MS data
set is of size 256� 256.
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A thorough performance comparison was carried out among the novel method and
the following state-of-the-art image fusion methods:

1. Generalized Intensity Hue Saturation (GIHS) (Carper et al. 1990);
2. Synthetic Variable Ratio (SVR) (Carper et al. 1990);
3. Additive Wavelet Transform (AWL) as proposed by Nunez et al. in (Nunez et al.

1999);
4. Ranchin-Wald-Mangolini Method (RWM) as described in (Ranchin et al. 2003);
5. Context-Based Decision Method (CBD) (Aiazzi et al. 2002);
6. Gram-Schmidt spectral sharpening method (GS) (Laben 2000) as implemented in

ENVI1;
7. Zhang Method (ZM) (Zhang 2002) as implemented in PCI Geomatica1.

To this purpose, the datasets have been spatially degraded by four, according to Wald’s
protocol (Wald et al. 1997), and statistics have been calculated between fused and
original data.

Score band-independent indexes, which are used to evaluate performances of fusion
methods, are ERGAS (Ranchin et al. 2003), Spectral Angle Mapper (SAM) (Alparone et
al. 2003) and Q4 index as described in subsection 2.2. The values of the three indexes are
calculated for each fusion method and are reported in table 2 for 4 : 1 fusion carried out
on spatially degraded data. The results show that GA fusion outperforms the other fusion
methods for all three indexes. A performance ranking of algorithms indicates that the
GA method is followed by ZM, RWM, CBD and GS methods whose performances
highly depend on the particular data set being considered.

Figure 2 reports 128� 128 tiles of the expanded images and the GA, GIHS fused
data at 0.7m. In all figures, true color (B2-B1-B0) composites, instead of false color (B3-
B2-B1) composites are shown because fusion methods typically fail on the blue band
(B0). Figure 2(b) demonstrates that Pan accurately sharpens and does not over-enhance
the MS images. Finally, a comparison between fused and lower-scale original images
shows that evident spectral distortions are totally avoided by proposed algorithm but not
by GIHS method.

6 CONCLUSIONS

In this article it has been shown that the proposed method based on a genetic algorithm
is better suited for accurate spectral preserving image merging than the most efficient
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Table 2. ERGAS, SAM, Q4 indexes between 2.8 m MS bands and 11.2 m MS bands merged
with 2.8 m Pan.

EXP GA IHS SVR AWL RWM CBD GS ZM

ERGAS 4.907 3.022 3.767 3.744 3.589 3.376 3.366 3.468 3.257
SAM 4.050 3.471 4.519 4.050 5.244 3.747 3.735 3.715 3.649
Q4 0.791 0.937 0.901 0.899 0.905 0.919 0.917 0.911 0.917



state-of-the-art fusion techniques. In particular, the injection process of the proposed
algorithm based on a modified version of the GIHS method outperforms the well-known
wavelet-based methods and the best commercial software solutions. Experiments
carried out on very high resolution Quickbird images have shown that the proposed
algorithm is quantitatively more efficient than other image fusion methods. Moreover
the algorithm is capable of enhancing the spatial quality while preserving the spectral
content of the MS image data regardless of whether the observed scenario is urban, or
forestal, or agricultural.
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