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Abstract. In the last decades RS and GIS technology have been increasingly used for hydrological 
applications. Hydrological parameters estimation is strongly related to land cover composition. 
This study examines the impact of different approaches to estimate land cover distribution on the 
prediction and the spatial pattern of surface runoff. Land cover fractions are derived at sub-pixel 
scale from CHRIS/Proba data by applying Multiple Endmember Spectral Mixture Analysis 
(MESMA). These are used as input for a spatially distributed hydrological model (Wetspass).       
A fully distributed approach, where land cover fractions are specific for each cell and obtained 
through MESMA is compared to a semi distributed approach, where the land cover fractions for 
each cell are fixed a priori, based on the land-use type of the specific cell. The fully distributed   
approach, based on RS derived land cover estimation, proves to have a strong impact on the spatial 
distribution of runoff when compared to the results obtained with the more traditional, semi-
distributed approach. Using MESMA in combination with the Wetspass model allows making full 
use of the potential distributed hydrological modelling, leading to a spatially more detailed       
characterization of hydrological processes. 

Keywords. Hydrological modelling, CHRIS/Proba imagery, multiple endmember unmixing,   
landcover mapping, runoff, evapotranspiration. 

1. Introduction 

The use of remote sensing and GIS technology in hydrological modelling has strongly increased in 
the last decades. This allows the mapping of the spatial variability of various parameters which are 
important for runoff estimation (land cover, soil texture, slope). Several studies have focused on the 
use of multispectral satellite imagery from medium and high resolution sensors to improve          
hydrological modelling results [1], [2]. Recently, spaceborne hyperspectral sensors such as          
Hyperion and CHRIS/Proba (Compact High Resolution Imaging Spectrometer/Project for On Board 
Autonomy) have opened up new possibilities for land cover mapping, thanks to their increased 
spectral resolution. Recent work has focused on the potential of CHRIS/Proba data for deriving land 
cover fractions at sub-pixel scale [3]. A technique which has proved very effective for estimating 
sub-pixel land cover fractions in urban areas is Multiple Endmember Spectral Mixture Analysis 
(MESMA) [4]. Compared to standard Linear Spectral Mixture Analysis (LSMA), MESMA allows 
endmembers to vary on a per-pixel basis and therefore allows taking full account of the                
heterogeneous composition of land cover in urbanized areas.  

The objective of this work is to integrate the results of MESMA applied on CHRIS/Proba data 
in the Wetspass model, a spatially distributed model to estimate the main water balance             
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components: evapotranspiration, surface runoff and groundwater recharge [5]. In Wetspass, the    
water balance is calculated at the level of raster cells. For each raster cell, the water balance is split 
into independent water balances for the vegetated (V), bare soil (B), impervious surfaces (I) and 
open water (W) fractions, which are present within the cell. Sub-pixel estimates of these land cover 
components obtained from hyperspectral CHRIS/Proba imagery by applying the MESMA approach, 
are used in this study to improve runoff mapping with Wetspass for the Woluwe, a strongly         
urbanized catchment in the Brussels Capital Region.  

In this study we compare the effects of different land cover input scenarios on the spatial        
distribution of surface runoff, going from a semi distributed to a fully distributed approach. For the 
semi distributed approach, sub-pixel fractions of the four major land cover components (V-B-I-W) 
are fixed a priori based on the land use type of each pixel, using fractional values specific for each 
type of land use as implemented in WetSpass or as obtained from remote sensing. For the fully    
distributed approach, land cover fraction values for V, B and I for each cell are derived directly 
from the MESMA results. Mean and standard deviation values of runoff are calculated for each land 
use type in the study area and are compared for the different input scenarios.  

2. Study area and data 

The test area for this study is the catchment of the Woluwe, a small river crossing the eastern part of 
the Brussels Capital Region (Belgium). The catchment is characterized by a complex mixture of 
urban and non-urban land cover types. The catchment topography decreases from 129m above sea 
level in the south to 15m above sea level in the northern part at the confluence with the Zenne river, 
with slopes varying between 0 and 22%. The soil cover is loam (94%) and sandy loam (6%). Mean 
monthly temperatures range from 5.0°C in winter to 14.1°C in summer. The mean annual             
precipitation in the region is approximately 780 mm/year. 

2.1. Remote sensing data 

A cloud free CHRIS/Proba image covering an area of 14 km by 14 km was acquired in MODE 3 on 
August 19th, 2009. It includes 18 spectral bands at 18 meter pixel resolution. The BEAM Toolbox 
software was used to remove drop-outs and vertical striping generated during the image formation 
process and to transform at-sensor radiance into surface reflectance [6]. The image was              
geo-referenced in the Belgian Lambert coordinate system using 0.25 m orthophotos obtained from 
AGIV (Agentschap voor Geografische Informatie Vlaanderen) as a reference. To reduce        
within-class spectral heterogeneity the brightness normalization method proposed by Wu [7] was 
applied. The method removes differences between spectra caused by overall brightness thus        
emphasizing the shape information of each spectrum.  

2.2. Input data for the Wetspass model 

A land use map covering the study area was downloaded from the GMES “Urban Atlas” project 
issued by the European Environmental Agency and subsequently rasterized at a spatial resolution of 
3 meters (Figure 1). Land use was spatially aggregated to 18 m, corresponding to the resolution of 
the CHRIS/Proba data. A DEM at a scale of 1:10,000 was acquired from the NGI (Nationaal 
Geografisch Instituut) of Belgium and subsequently rasterized at 18 m resolution. 
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Figure 1: Land use map of the Woluwe catchment based on data from the European Environmental Agency – GMES 
“Urban Atlas” project.  

3. Methods 

3.1. MESMA: Estimating land cover fractions from CHRIS/Proba data 

Multiple Endmember Spectral Mixture Analysis (MESMA) is an unmixing approach which has 
been reported effective in increasing the accuracy of land cover fractions in cases where the spatial 
and spectral heterogeneity of land cover is high [3], [4], [8]. It is an extension of standard Linear 
Spectral Mixture Analysis (LSMA), where the reflectance of a pixel is modelled as the sum of the 
reflectance of each material (endmember) occurring within the sensor’s field of view, weighted by 
its respective fractional cover:  

 
 
                                  (1) 
 
 
where rib is the reflectance of endmember i for a specific band b, fi is the fraction of endmember 

i, N is the total number of endmembers, and εb is the residual for band b. By letting endmembers 
vary on a per pixel basis, MESMA takes account of spatial and spectral heterogeneity and thus 
makes better use of the potential of RS data for discriminating between different land cover types. 
The reader is referred to [3] for a detailed explanation on the methodology applied for deriving land 
cover fractions from CHRIS/Proba data, using the MESMA approach. Sub-pixel land cover       
fractions for the Woluwe catchment were estimated for vegetation (V), bare soil (B) and impervious 
surfaces (I) (Figure 2). The water fraction was not estimated at sub-pixel level. The presence of    
water (rivers, canals, ponds) was directly taken from the GMES land use map resulting in a binary 
image indicating water fractions of 1.0 (presence) or 0.0 (absence). Land cover fractions for V, B 
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and I were validated using a sub-pixel groundtruth dataset obtained through visual interpretation of 
25 cm orthophotos, resulting in an overall mean proportional error of around 12%. For more details 
on the results of the validation, the reader is referred to [8]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Land cover fractions for the Woluwe catchment. Vegetation fraction (upper left), bare soil fraction              
(upper right), impervious surfaces fraction (lower left) and open water fraction (lower right). 
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3.2. Wetspass: A spatially distributed hydrological model for runoff estimation  

WetSpass stands for Water and Energy Transfer between Soil, Plants and Atmosphere under     
quasi-Steady State [5]. It is a physically based model able to simulate long-term average spatial   
patterns of groundwater recharge, surface runoff and evapotranspiration. It is fully integrated in a 
geographical information system as a raster model and is able to handle spatially distributed input 
data, such as soil type, land use type, slope, and groundwater depth, as well as long-term average 
climatic data. The water balance computations are performed at cell level. For each cell, the water 
balance is split into independent water balances for the vegetated, bare soil, open water and         
impervious surfaces fractions present within the cell. By summing up these independent water     
balances, the total water balance at cell level is obtained. The basic equations used in the model are: 
 
ETraster = avETv + abEb + aiEi + awEw                            (2) 
Sraster = avSv + abSb + aiSi + awSw                     (3) 
Rraster = avRv + abRb + aiRi + awRw                     (4) 

 
where ETraster, Sraster, Rraster are the total evapotranspiration, surface runoff and groundwater      

recharge of a raster cell respectively, each having a V, B, I and W area component denoted by av, ab, 

ai and aw respectively. The reader is referred to [9] for a more detailed explanation on how the     
computations of each component’s water balance is performed.  

3.3. Improving Wetspass runoff estimation using land cover fractions obtained from MESMA 

In order to solve equations (2), (3) and (4) at pixel level, knowledge about the four land cover area 
components (av, ab, ai and aw) is necessary. The Wetspass model defines default proportions of the 
four land cover components for each land use type (Table 1) [10]. As an alternative for the use of 
default values, sub-pixel estimates of the fraction of the four major land cover components            
(V-B-I-W), obtained from CHRIS/Proba imagery by applying the MESMA approach, were used in 
this study to improve runoff mapping with Wetspass. To test the effect of using RS derived data   
instead of default values per land use type, three different scenarios have been defined,                
corresponding to a gradual increase of information on the spatial distribution of the four major land 
cover fractions (V-B-I-W), going from a semi-distributed to a fully-distributed approach.  

3.3.1 Scenario 1: Semi-distributed approach based on default Wetspass land cover fractions 

In this scenario, the four major land cover components (av, ab, ai and aw) are fixed a priori. For each 
type of land use, a particular land-cover composition corresponding to the fractions of V, B, I and 
W specific for that land use class was assigned. The fraction values used are those defined by      
default in the Wetspass model [10], as shown in table 1. For each pixel the land-cover composition 
relies on its land-use type.  

3.3.2 Scenario 2: Semi-distributed approach based on MESMA derived land-cover fractions 

This scenario is similar to scenario 1, in the sense that it is also a land use related approach.         
For each pixel, the four major land cover fractions depend on the land use type, just as in the       
previous scenario. The difference is that in this case the land cover composition specific for each 
land use type is obtained from the CHRIS/Proba unmixing results. Average fraction values of V, I, 
B and W were calculated for each of the thirteen land-use classes present in the Woluwe catchment 
(Figure 1) from the pixel-based fractions obtained by applying MESMA (Figure 2). The values    
obtained and used in scenario 2 are shown in table 1. 
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Table 1. Land cover fraction estimates for each land-use class (see fig. 1) as used in Wetspass (left) compared to land-
cover fraction estimates obtained by applying MESMA on the CHRIS/Proba dataset for the Woluwe catchment (right). 

 
 
 
 
 
 
 

 
 
 
 
 
 
  

3.3.3 Scenario 3: Fully-distributed approach based on cell-specific land cover fractions derived 
from MESMA 

Finally, in this scenario fractions for the four major land cover components (av, ab, ai and aw) were 
assigned at pixel level and were obtained directly from MESMA. This way, the local variability of 
land cover composition within each land use type is taken into account and the capabilities of the 
spatially distributed Wetspass model are fully exploited.  

In each scenario the mean and standard deviation values for runoff have been calculated per 
land use class, in order to assess the impact of using a fully-distributed instead of a semi-distributed 
approach for runoff estimation.  

4. Results and discussion 

The objective of this study was to analyze the impact of using remote sensing based estimates of 
land cover fractions obtained through MESMA in the modelling of runoff with Wetspass, compared 
to the use of fixed, a priori defined fractions per land use type.  

4.1 Land cover fractions for different land uses  

As explained in section 3.3., in scenario 2, average land cover fractions for each land use type      
present in the Woluwe catchment were calculated based on per-pixel estimates of these fractions 
obtained through MESMA (Table 1). A comparison with the default fraction values for different 
land use types defined in Wetspass, and used in scenario 1, shows some clear differences in fraction 
value estimates. For the three major “urban fabric” classes (code 1, 2, 10) estimates of the            
impervious surface fraction obtained through remote sensing prove to be about 10% lower than the 
default fractions used in Wetspass. For the “Infrastructure” class (code 4) the opposite is observed, 
with the impervious surface fraction estimate obtained from remote sensing about 13% higher than 
the default value and the vegetation fraction almost 20% lower. Also for the “road” classes (201, 
202) remote sensing estimates of the I-fraction prove to be substantially higher than the default    
values used in Wetspass. This systematic under- and over-estimation of impervious surface cover 
for the different urban classes is likely to have an impact on local runoff estimation. Vegetation 
fractions for the “Agricultural, semi-natural and wetland areas” (code 21) and “Grass” (code 307) 
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prove to be substantially lower than the Wetspass default values (30% and nearly 20% respectively), 
which may be explained by the fact that the area covered by these two classes includes fields that 
are temporarily left fallow. This is clear from the map showing bare soil fraction estimates in Figure 
2. The presence of an impervious surface fraction above 10% in these two classes is partly caused 
by spectral confusion between specific types of bare soil and impervious surface cover.   

4.2 Runoff estimation 

When comparing the mean runoff values per land use class for the three input scenarios, some clear 
differences are observed (Figure 3). Except for the transportation related land use classes          
(code 201, 202 and 4), urban land uses produce smaller average runoff values when using remotely 
sensed data for estimating land cover composition (scenario 2-3) then when using default land cover 
parameters incorporated in the Wetspass model (scenario 1). This is due to the fact that the          
impervious surface cover in most urban classes proves to be lower than assumed in the default land 
cover parameterization of the Wetspass model. For the “Fast roads and assoc. Lands”, “Other 
roads” and “Infrastructure” classes (codes 201, 202 and 4 respectively) the imperviousness level is 
underestimated in the Wetspass model, while the vegetation fraction is overestimated. Therefore, 
making use of the unmixing results obtained from hyperspectral CHRIS/Proba data (scenario 2 and 
3) increases the runoff estimate for these specific classes. The highest runoff value in the three     
scenarios (close to 400 mm/year) is obtained for the land use class “Continuous Urban Fabric 
(S.L.>80%)” (code 1), which corresponds to the most dense urban class. For the “Airport” class 
(code 6) the mean runoff value in scenario 1 is much higher than in the other two scenarios. This is 
because, using its standard parameter estimates, the Wetspass model assumes a much higher level 
of imperviousness for this specific class, ignoring the presence of vegetation and bare soil in the 
airport area, the way it is delineated in the GMES urban atlas. This illustrates the benefits of using 
remotely sensed data for obtaining more realistic estimates of land cover fractions for each land use 
class, and consequently more realistic hydrological parameter estimates. 

In general, mean runoff values are in line with results obtained for other catchments in Belgium 
in previous work [9], and show the strong link between runoff and level of imperviousness within 
each land use type. Mean values are very similar when comparing scenarios 2 and 3, as both make 
use of the same remotely sensed derived input. The difference between scenarios 2 and 3 lies in the 
standard deviation values for runoff calculated over all cells that are part of the same land use class. 
Using the unmixing results from CHRIS/Proba obtained for each cell directly as input for the model 
(scenario 3) strongly increases the variance in runoff within the urban land use classes. In scenario 2, 
the unmixing results derived from CHRIS/Proba are used only for obtaining a more realistic overall 
estimate of land cover composition for each land use class. The land cover composition of each cell 
depends on the land use class it belongs to, and therefore per-class standard deviations for runoff 
are very similar to the values obtained for scenario 1. In scenario 3, local variations in land cover 
composition within each land use type are taken fully into account. As a result, standard deviation 
values for runoff strongly increase for this scenario. 
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Figure 3: Mean and standard deviation of runoff estimates for the three scenarios and for each land use class. 

 
Figure 4 shows the spatial distribution of runoff in the Woluwe catchment produced by the 

Wetspass model. For scenario 1 and 2, the spatial pattern of runoff is very similar and clearly linked 
to the pattern of land use for the catchment (Figure 1), showing that land use knowledge plays an 
important role for defining the spatial distribution of runoff when using a distributed hydrological 
model such as Wetspass. Variations in runoff value within each land use class are limited,          
confirming the small standard deviation values obtained (Figure 3). In scenario 3, a strong local 
variation in the runoff pattern is noticed within the urban area, confirming the high standard        
deviation values obtained for this scenario (Figure 3), and indicating the importance of the land 
cover component in runoff estimation. For each pixel, the runoff estimate is not derived mainly 
from its specific land use class membership, but also from its real land cover class composition, 
yielding to a more realistic final result. 

5. Conclusions 

In this study land cover fraction estimates obtained by multiple endmember unmixing (MESMA) of 
a hyperspectral CHRIS/Proba image are used to improve the estimation of runoff for the Woluwe 
catchment (Brussels), using the Wetspass model. In Wetspass, water balances are calculated at the 
raster cell level, independently for the vegetated, bare soil, open water and impervious surface    
fractions present within the cell. The objective of this study was to assess the impact of using      
remote sensing based estimates of per-pixel land cover composition on runoff estimation, compared 
to the use of a priori defined land cover fractions for each land use type, included in the model. Also 
the impact of using cell-specific land cover fraction estimates instead of land use specific, spatially 
invariant land cover fractions was examined. 

Results show that, for most urban land use classes, land cover fraction values included in the 
model substantially differ from values obtained through remote sensing, with impervious surface 
levels being systematically overestimated. These land use classes produce smaller runoff values 
when remotely sensed data are used as an input in the hydrological model, showing the strong link 
between runoff and the level of imperviousness present within each land-use type.   
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Figure 4: Yearly runoff estimation for the three scenarios. 

 
When subpixel estimates derived from MESMA are directly used for the estimation of runoff 

values at cell level, the local variation of land cover composition is fully taken into account in the 
modelling. In this scenario, a strong local variation is observed in the spatial distribution of runoff 
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values, proving the benefits of using remotely sensed data for obtaining more detailed information 
on the spatial pattern of runoff. 

Combining MESMA, a per-pixel basis unmixing approach, with Wetspass, a spatially            
distributed hydrological model, allows one to fully benefit from spatially detailed mapping of land 
cover in the modelling of runoff. On the other hand, our work also pointed out the limitations of the 
CHRIS/Proba sensor for land cover mapping in urbanized areas, due to the spectral similarity      
between specific types of impervious surfaces and bare soil [3], [8], which may negatively affect 
the quality of runoff estimation in some locations. Hyperspectral data with a higher spectral        
resolution and covering a larger spectral range may enhance the distinction between spectrally   
similar land cover classes leading to a further improvement in runoff estimation.  
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