A short overview on the use of optical satellite data in atmospheric corrections for satellite InSAR applications

Rosa Lasaponara, Antonio Lanorte

IMAA-CNR, EARSeL General Secretary, C/da S. Loya Tito Scalo 85050 (PZ) Italy
rosa.lasaponara@imaa.cnr.it

Abstract. SAR interferometric (InSAR) techniques allow us to estimate displacements of the earth's surface with a centimeter to millimetric precision. InSAR techniques date back to 1989 when L-band SEASAT SAR data was first exploited to this aim and in the last few years the capability of different interferometric techniques has been considerably improved. Moreover, the finer spatial resolution and the short revisit time of the most recent satellite SAR, such as TERRA and COSMO-SkyMed constellations appear very promising for further significant improvements. Nevertheless, even if radar are all weather sensors it is also important to improve the estimation and minimization of effects of atmospheric delays. This paper provide a short overview on the use of optical satellite data in atmospheric corrections for satellite InSAR applications.

Keywords. INSAR, atmospheric phase delay, PWV, MODIS, MERIS, GPS

1. Introduction

SAR interferometric techniques allow us to estimate displacements of the earth's surface with a centimeter to millimetric precision by exploiting the difference in the phase values computed for two or more SAR images acquired for the study area at different times. As known, the difference in the interferometric phase (i.e. difference in the signal path between two or more acquisitions) depends not only on the differences in elevation between the two or more images, but also by a number of additional contributions, described in equation 1, including orbital parameters, weather conditions and a noise component.

\[\Delta \phi = \Delta \phi_{\text{topo}} + \Delta \phi_{\text{mov}} + \Delta \phi_{\text{orb}} + \Delta \phi_{\text{atm}} + \Delta \phi_{\text{noise}} \quad \text{eq. 1} \]

For most applications, with particular reference to the estimation and monitoring of soil slow movements, it is necessary to estimate and remove (or at least minimize) the impact of “additional” contributions. In particular, the discrimination in a differential interferogram of the atmospheric signal from that of deformation can be very complex since the signals of phase delay (caused by atmospheric water vapour) and those caused by deformations can be very similar in both amplitudes and spatial extensions.

Several authors (eg, Goldstein, 1995; Zebker et al., 1997; Hanssen, 1998, Li et al. 2006a, 2009; Ding et al., 2008) have studied in detail the atmospheric effects on InSAR. Results from these studies, pointed out that changes in atmospheric relative humidity at around 20% may introduce errors up to 10-14 cm in the estimation of ground deformations and also significant errors (around 80-290 m) in topographical maps. Therefore, when the focus of the analysis is the estimation and monitoring of slow movements of the soil using a time series of images (usually taken in conditions very different from each other), it is necessary to mitigate the effects of phase delay.
2. Atmospheric delay

Atmospheric delay which may affects radar signal is mainly due to the spatial heterogeneity of tropospheric water vapor. Currently there are different methods to estimate and reduce the atmospheric effects in the InSAR applications. These approaches can be divided into four main types methods based on:

1. Stacking SAR interferograms (see, for example, Zebker et al., 1997, Williams et al. 1998) which degrade the temporal resolution of the DInSAR measures and tend to mix useful geophysical signals, in particular transient signals, making them undetectable.

2. Analysis of correlation between interferograms or between the interferometric phases and elevations (for example, adopted Beauducel et al., 2000; Fruneau and Sarti, 2000, Remy et al. 2003; Chaabane et al., 2007). These techniques allow us to only model and reduce lower tropospheric noise which correlates different interferograms or with significant values in elevation.

3. Techniques based on permanent scatterer (PS) (see for example, Ferretti et al., 2000; Hoo -per et al. 2004). PS techniques require a large number of images, and do not provide satisfactory results when atmospheric effects are similar (in the spatial or temporal domain) to geophysical signals.

4. Techniques based on the use of external data, such as (i) meteorological data (Delacourt et al., 1998), (ii) GPS (Li et al 2006a,b,c; Li et al 2006d), (iii) high resolution meteorological models (Webley et. al 2004, Foster et al., 2006) and (iv) satellite data, such as MODIS (Moderate Resolution Imaging Spectroradiometer) (Li, 2005, Li et al. 2005) and/or MERIS (Medium Resolution Imaging Spectrometer) (Li et al., 2006c ; Li et al., 2009).

Among the above quoted approaches, great attention has been devoted to the use of satellite-based Precipitable Water Vapour (PWV) products due to the technical improvements achieved in the last years in terms of resolution and accuracy. Both MODIS and MERIS PWV products have been (eg. Li, 2005; Li et al., 2005; Li et al., 2006c; Puysségur et al., 2007; Ding et al., 2008; Li et al., 2009) adopted for atmospheric correction in InSAR techniques. In particular, PWV MERIS products have been most investigated mainly because MERIS data: (i) were available simultaneously with ASAR (being both sensors aboard ENVISAT), (ii) provide PWV estimation in spatial resolution up to 0.3 km (much higher than other data sources) and with an accuracy close to that of GPS (with a difference of about 1.1 mm rms). For these reasons, MERIS PWV products are considered to be very promising to correct atmospheric effects in the ASAR interferograms.

Li et al (2006b) quantitatively evaluated the impact of PWV MERIS in atmospheric corrections applied for ASAR interferometric chain for Los Angeles (Li et al., 2006c) and Hong Kong (Ding et al. 2008).

Puysségur et al (2007) proposed an atmospheric corrections techniques based on the integration of MERIS products with MM5 model (mesoscale meteorological model of the fifth generation developed by the National Center for Atmospheric Research/Pennsylvania State University). Quantitative evaluations carried out by Puysségur et al (2007) confirmed that the use of MERIS was highly satisfactory but no significant improvements were achieved using MERIS products jointly with MM5 model.
Li et al. (2009) proposed the combined use of MODIS and MERIS but, also in this case, the quantitative evaluation showed not significant improvement compared with the use of the sole MERIS.

Williams et al. (1998) have shown that in addition to the accuracy and the density of the data also the adopted interpolation model is critical.

3. Methods to compute atmospheric delay from PWV from MERIS/MODIS products

3.1. MERIS and MODIS water vapor data

MERIS, mounted with the ASAR on the space platform ENVISAT European Space Agency, is an optical sensor that measures the solar radiation reflected by the Earth's surface and clouds. However, on April 8, 2012, after 10 years in orbit, communication with the Envisat satellite was suddenly lost, and was later declared the end of the mission.

<table>
<thead>
<tr>
<th>Products</th>
<th>GPS PWV</th>
<th>MODIS near IR PWV</th>
<th>MERIS near IR PWV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Satellites</td>
<td>≥24</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Coverage</td>
<td>Regional</td>
<td>Global</td>
<td>Global</td>
</tr>
<tr>
<td>Observation Period</td>
<td>Day and night</td>
<td>Day</td>
<td>Day</td>
</tr>
<tr>
<td>Spatial Resolution</td>
<td>A few km to a few hundred km (e.g. 10 km to 25 km over SCIGN)</td>
<td>1 km = 1 km RR: 1.2 km x 1.2 km FR: 300m x 300m</td>
<td></td>
</tr>
<tr>
<td>Temporal Resolution</td>
<td>Almost continuous (e.g. 5 minutes)</td>
<td>Up to 4 times at some latitudes during daytime 3 days</td>
<td></td>
</tr>
<tr>
<td>Sensitivity to Clouds</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PWV Accuracy</td>
<td>~1 mm</td>
<td>5-10% (or 1.6-2.0 mm)</td>
<td>1.6-2.0 mm</td>
</tr>
</tbody>
</table>

Both coverage and spatial resolution are relative to current CGPS networks in the world.

GPS, MODIS and MERIS PWV products are complementary!

Figure 1. MODIS/MERIS Channel Positions Related to PWV (from Gao and Kaufman, 1998)

Figure 2. Comparison of PWV products from satellite and GPS (UCL courtesy)
The images cover a range of 1150 km (nominal altitude of 800 km) and allow seamless global coverage in two or three days. MERIS has 15 spectral bands from the visible to the near infrared (390-1040 nm). Two of the 15 spectral bands in the near infrared, in an absorption band (885 nm) and the other outside of the absorption band (900 nm), are used to calculate maps of PWV using the method of differential absorption.

MODIS (Moderate Resolution Imaging Spectroradiometer) is a spectroradiometer which provides data with high radiometric sensitivity (12 bit) in 36 spectral bands with wavelengths from visible to thermal infrared with a spatial resolution ranging from 250 m to 1 km away. The near-IR water vapor products provided by MODIS have a spatial resolution of 1 km × 1 km (at nadir) and are widely used for almost a decade for the correction of the atmospheric effects on InSAR data. The algorithm used to calculate the amount of water vapor is based on observations of water vapor attenuation of solar radiation in the near-IR reflected from the earth's surface and by clouds. The measurements can be performed only on areas that have reflective surfaces in the near-IR. The techniques applied using the relationship between the absorption of water vapor channels centered at 905, 936 and 940 nm with the channels corresponding to the spectral windows centered at 865 and 1240 nm.

Example of MODIS-PWV obtained for the Basilicata region (Figure 3) and MERIS-PWV (Figure 4), for the same study area as for the MODIS products, are in figures 3 and 4 respectively.

3.2. Atmospheric phase delay correction

For the correction of the atmospheric delay, cloud-free (ie in the absence of cloud cover) PWV MODIS and MERIS products, must be converted into Zenith Wet Delay (ZWD) using equation 2

\[ZWD = \Pi PWV \]

where \(\Pi \) denotes an adimensional parameter given by equation 3 (Bevis et al., 1994)

\[\pi = 10^{-6} \rho R_y \left[\frac{k_3}{T_m} + k_2 - \omega k_1 \right] \]

where \(\rho \) is the density of liquid water, \(R_v \) is the specific gas constant, \(K_1, K_2, K_3 \) are constants of the atmospheric refractivity and \(w \) is the ratio of the mass of the molecules of water vapor and molecules of dry air; finally, \(T_m \) is the temperature-weighted average of the troposphere (eq. 4).

\[
T_m = \frac{\int \left(e / T \right) dh}{\int \left(e / T^2 \right) dh}
\]

where \(e \) is the partial pressure of water vapor, \(T \) is the absolute temperature, and \(h \) is the height of the atmospheric profile.

The estimation of \(T_m \) from equation 4 is generally quite complex and difficult. Bevis et al. (1994) analyzed the relationship between the surface temperature \(T_o \) and \(T_m \) measured using a large number of radiosondes for North America. They found a high linear correlation between \(T_m \) and \(T_o \) with an RMS error at around 4.7 K.

\[T_m = 70.2 \times 0.72 \ T_o \]

Assuming, \(T_o = 300K \) and a PWV= 2.0 cm, we have an error at around 4.7K on \(T_m \) due to an uncertainty of the order 0099 in the mapping of the scale factor \(\Pi \). This introduces an error at around 1.98 mm in the estimation of ZWD. The impact of this error is absolutely negligible.

In its simplest form, the value of the \(\Pi \) conversion factor can be obtained by using equation 6 [Scheuler et al., 2001]

\[
\Pi = 0.10200 + \frac{1708.08[K]}{T_m}
\]

\(T_m \) is generally obtained by using radiosonde profiles or using measurements of the superficial temperatures (from equation 5).

In the case of unavailability of radiosondes profiles or measurements of surface temperature the \(\Pi \) conversion factor can be, as suggested by Li et al. (2004), equal to 6.0 (for summer months), 6.2 (winter months), 6.1 (spring and autumn). Figures 5 and 6 show two examples of ZWD map from MODIS-PWV and MERIS-PWV.

Figure 5.
MODIS- ZWD – April 10, 2011

Figure 6.
MERIS-ZWD- April 3, 2011
Finally, ZPDDM is calculated as the difference between 2D ZWD fields. ZPDDM maps are further processed to “re-fill” cloudy pixels and eliminate calibration errors and/or noise using: (i) an interpolation method based on inverse distance weighing to fill the pixels covered by clouds and, therefore, excluded (ii) low-pass filters to remove residual noise.

All the computation steps of the model for the calculation of atmospheric phase delay are summarized in figure 7.

![Flow chart](image)

Figure 7. Flow chart adopted to obtain the wet delay from satellite data MODIS and MERIS
4. MODIS-ZWD e MERIS-ZWD calibration and validation

The calibration of the MODIS ZWD and MERIS ZWD is carried out using a procedure based on independent data source, mainly GPS or meteorological measurements (temperature and relative humidity). To this aim, the model developed by Saastamoinen (1972) based on temperature and relative humidity is generally considered reliable and accurate (Katsougianopoulos et al., 2006) with an accuracy at around 3 cm at zenith (Mendes, 1999). The model, based on equation 7 assumes that the temperature decreases linearly with the height:

\[
ZWD = 0.002277 \left(\frac{1255}{T} + 0.05 \right) e_o
\]

where \(T \) is the atmospheric temperature in K (Kelvin)
\(e_o \) is the unsaturated vapour pressure in hPa obtained using the following equation:

\[
e_o = 6.11 \frac{(RH/100)^{7.5\cdot T}}{10^{237.74\cdot T}}
\]

where RH is Relative Humidity.

For the investigated area located in the Basilicata region, we selected meterological measuresments, shown as yellow arrows in figure 8 and listed below, acquired at the same time as the MODIS e and MERIS imagery:

- Potenza (40°37'35" - 15°47'49")
- Oppido (40°45'49" - 15°59'08")
- Marsico (40°25'35" - 15°43'46")
- Albano (40°34'54" - 16°02'07")

The procedure compare the ZWD obtained from the Saastamoinen model with those obtained from satellite products (both MODIS-ZWD e MERIS-ZWD) which, according to Keeratikasikorn e Trisirisatayawong (2011) exhibit a linear relationship:

\[
ZWD_{saas_modis_time} = a \times ZWD_{modis} + b \quad \text{eq. } 9
\]
\[
ZWD_{saas_meris_time} = a \times ZWD_{meris} + b \quad \text{eq. } 10
\]

Where \(ZWD_{saas_modis_time} \) e \(ZWD_{saas_meris_time} \) are ZWD obtained from the Saastamoinen model at the same time as the satellite acquisition (for the study area MODIS at 10.00 UTC and MERIS at 9.00 UTC). \(ZWD_{modis} \) e \(ZWD_{meris} \) are ZWD obtained from MODIS-PWV and MERIS-PWV.

201
The scale factor a for both the equation 9 and 10 is obtained for the four stations and then spatially interpolated using Inverse Distance Weight (IDW).

Figure 8. Yellow arrows indicate the positions of the meteorological stations; pink boxes indicate the SAR frame.

The validation procedure is performed by comparing the ZWD maps computed using the Saastamoinen (applied to a meteorological data set different from those used for the calibration procedure) and the MODIS-ZWD e MERIS-ZWD maps calibrated as previously described. Table 1 and 2 show the results of the comparison for MODIS and MERIS ZWD maps, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Mod_ZWD pre-cal</th>
<th>Mod_ZWD post-cal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation R^2</td>
<td>0.574</td>
<td>0.782</td>
</tr>
<tr>
<td>Error medium (cm)</td>
<td>2.42</td>
<td>2.05</td>
</tr>
<tr>
<td>Std. Dev. difference(cm)</td>
<td>1.97</td>
<td>1.56</td>
</tr>
</tbody>
</table>

Table 1. Validation of MODIS-ZWD before and after the calibration

<table>
<thead>
<tr>
<th></th>
<th>Mer_ZWD pre-cal</th>
<th>Mer_ZWD post-cal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlazione R^2</td>
<td>0.698</td>
<td>0.842</td>
</tr>
<tr>
<td>Errore medio (cm)</td>
<td>3.19</td>
<td>2.28</td>
</tr>
<tr>
<td>Std. Dev. differenze (cm)</td>
<td>2.32</td>
<td>1.79</td>
</tr>
</tbody>
</table>

Table 2. Validation of MERIS-ZWD before and after the calibration
Both table 1 and 2 clearly show that the correlation values are higher after the calibration phase $R^2_{\text{post-cal}} = 0.782$ post-cal and 0.574 pre-cal for MODIS and $R^2_{\text{post-cal}} = 0.842$ post-cal and 0.698 pre-cal for MERIS. The same behavior is observed for the errors 2.42 pre-cal cm to 2.05 cm post-cal and the standard deviation media from 1.97 cm pre-cal to 1.56 cm post-cal. Similarly for the MERIS data set.

These results pointed out that the calibration procedure we adopted is suitable to correct the ZWD MODIS and MERIS products. The final point is to consider the difference in the time acquisition between SAR data and optical dataset (Figures 9 and 10). For the study area and the considered data sets, made up of COSMO SKYMED, MODIS and MERIS (2011) the difference in time acquisition is 5 hours for MODIS and 4 hours for MERIS, being that COSMO data acquired at around 5 pm. The estimation of the impact of non contemporaneity is performed considering the ZWD maps obtained from the Saastamoinen model applied to the meteorological data acquired at the same time as SAR data.

Figure 9. MODIS-ZWD time difference impact – Linear regression analysis (using two meteo stations)
5. Final Remarks

This paper provides a short overview on the use of optical satellite data in atmospheric corrections for satellite InSAR applications. Even if, being active sensors, satellite radars are all-weather sensors for the acquisition capability, it is important to remind that the effects of atmosphere tend to adversely impact the data introducing the so-called “atmospheric phase delay”.

Over the years, several authors (e.g., Goldstein 1995; Zebker et al. 1997, Hanssen, 1998, Li et al. 2006b, 2007; Ding et al., 2008) have studied and quantified the atmospheric effects on InSAR. According to these studies, changes in atmospheric relative humidity at around 20% may introduce errors up to 10-14 cm in the estimation of ground deformations and also significant errors (around 80-290 m) in topographical maps. Therefore, when the focus of the analysis is the processing of a time series of images (usually taken in conditions very different from each other), it is necessary to mitigate the effects of phase delay.

In this paper, we provide a short overview on the use of optical satellite data in atmospheric corrections for satellite InSAR applications. A procedure based on the use of satellite-based PWV...
products is presented and discussed from the practical applications in the case study of a test sites in Basilicata region.

Acknowledgments

This work has been performed in the framework of the project “Analisi Critica Degli Algoritmi Allo Stato Dell’arte Per Correzioni Atmosferiche Da Dati Ottici Ed Indicazione Degli Algoritmi Selezionati” denoted as -SOS-MT-MONITORING-funded by the Italian Space Agency.

References

[40] Liu, Y., Remote sensing of atmospheric water vapor using GPS data in the Hong Kong region, PhD thesis, The Hong Kong Polytechnic University, Hong Kong, 2000.

Lasaponara & Lanorte: A short overview on the use of optical satellite data in atmospheric correction for satellite InSAR applications

Lasaponara & Lanorte: A short overview on the use of optical satellite data in atmospheric correction for satellite InSAR applications