Snow Cover Monitoring using Multi-temporal ENVISAT ASAR Data

Linda Valenti, David Small, Erich Meier

EARSeL LISSIG Workshop
Bern, Switzerland
Feb. 12, 2008
SNOW COVER MONITORING USING MULTI-TEMPORAL ENVISAT/ASAR DATA

Processing Chain:

ASAR IMS Product

\[\text{SLC } DN = \sqrt{(I^2 + Q^2)} \]

Abs. Calibration
Detection + Multilooking [dB]

\[\gamma^\circ_{i,j} = \frac{D N^2_{i,j}}{K} \frac{1}{G(\theta_{i,j})^2} \left[\frac{R_{i,j}}{R_{\text{ref}}} \right]^3 / A_i \]

Geocoding

Geocode / Radiometrically
Terrain Corrected (GTC/RTC)

Reference image

Difference

\[\Delta \text{ dB} \]
RGB Overlay
Late summer 2006

Difference Method

Method: \(\Delta \gamma = \gamma_{\text{img}} / \gamma_{\text{ref}} \) or

\[\Delta \gamma (dB) = 10 \times \log_{10}(\gamma_{\text{img}}) - 10 \times \log_{10}(\gamma_{\text{ref}}) \]

Quantitative Results: wet snow cover maps

February 2006 April 2006

June 2006 September 2006

Wet snow vs. dry snow

06.09.2006 11.10.2006 15.11.2006
Quantitative Results: 2D-histograms

February 2006

April 2006

June 2006

September 2006

October 2006

Seasonal trend graph:
Improved Retrieval of Thematic Snow Information with Geometric and Radiometric Corrections

Geocoded Terrain Corrected (GTC) Radiometrically Terrain Corrected (RTC)

ASAR WSM VV Products

05.08.2006 03.04.2006 23.01.2006

SNOW COVER MONITORING USING MULTI-TEMPORAL ENVISAT/ASAR DATA